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Abstract: 
 
In this doctoral dissertation blind decomposition of convolutive mixtures of close-to-
orthogonal pulse source signals is addressed. Three novel decomposition approaches 
based on the time-frequency analysis, higher-order statistics and algebraic approach are 
developed. Furthermore, necessary conditions for the reconstruction of complete pulse 
sequences and their impulse responses are investigated and a thorough and detailed study 
of the factors influencing its performance, such as noise and non-orthogonality of 
sources, are carried out. Although derived in the case of more measurements than sources 
(overdetermined system), the algebraic approach is extended to slightly underdetermined 
systems (with more sources than measurements). In contrast with other decomposition 
techniques, the proposed approaches work well also in the case of not completely 
orthogonal source signals. Finally, all the proposed solutions are applied to the surface 
electromyographic (EMG) signals.  
 
The thesis begins with an overview of existing methods and techniques for blind source 
separation. The methods for both multiplicative and convolutive cases are critically 
assessed and mutually compared. Next, a brief introduction to the physiology of the 
human muscles is given. In order to provide the basis for evaluation of the decomposition 
results on the real surface EMG signals, the properties of the motor unit (MU) 
innervation pulse trains, and generation of the motor unit action potentials (MUAPs) at 
the end-plate are explained. The factors influencing the shape and amplitudes of MUAPs, 
detected at the skin surface, are also identified. Afterwards, the decomposition methods 
for both intra-muscular and surface EMG signals are critically evaluated and the 
influence of the superimposed MUAPs studied. Finally, the assumed data model of 
surface EMG signals is introduced and its main limitations and assumption clarified. 
Surface EMG signals are modelled as a multi-channel, linear, shift-invariant multiple-
input-multiple-output (MIMO) system.  



 
In the second part of this dissertation, three different approaches to blind source 
separation of the convolutive mixtures of general pulse source signals are derived. Firstly, 
the over-determined case is assumed (the case with more measurements than sources) and 
two novel approaches introduced. The first one utilizes the Wigner-Ville time-frequency 
distributions and enables the reconstruction of both the pulse source signals and the 
corresponding MIMO system responses. The second approach enables automatic 
reconstruction of the MIMO system responses and is based on higher-order cumulants. 
Next, the decomposition is extended to the underdetermined case (the case with more 
sources than measurements) and a completely novel approach to blind deconvolution of 
pulse source signals, so called inverse correlation matrix based method, is derived.  
 
The introduced approaches are tested on both synthetic and real surface EMG signals. 
Firstly, the impacts of the number of active MUs, their firing frequencies, depth in the 
muscle tissue, etc., as well as the influence of noise are evaluated on the synthetic signals. 
The results prove the superiority of the inverse correlation based method. Applying it to 
the over-determined case at a high signal to noise ratio (SNR), almost all simulated MU 
innervation pulse trains are completely reconstructed. In the under-determined case with 
number of sources exceeding the number of measurements by factor 1.4, approximately a 
half of the simulated MUs are completely identified. The performance also drops with the 
SNR. At SNR of 0 dB, approximately 30 % of the MUs identified at SNR = 20 dB are 
reconstructed. In all cases, the decomposed innervation pulse trains exhibit a perfect 
match with the reference synthetic source signals. The other two methods are 
significantly less efficient.  
 
Finally, all three decomposition approaches are applied to the real surface EMG signals, 
recorded during an isometric 5 % and 10 % contractions of the dominant biceps brachii 
muscle of 9 healthy young male subjects. Again, the inverse correlation based method 
proves to be superior. Altogether, 30 and 56 MUs’ innervation pulse trains are 
completely reconstructed from the 5 % and 10 % muscle contraction measurements, 
respectively. The reconstructed MU firing patterns are compared against various 
physiologically induced limitations and prove to be in agreement with expectations and 
careful visual analysis. 
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Povzetek: 
 
V doktorski disertaciji obravnavamo postopke za slepo ločevanje konvolutivnih mešanic 
impulznih izvornih signalov in vpeljemo tri nove metode, ki omogočajo popolno 
rekonstrukcijo izvornih signalov oz. odzivov posameznih mešalnih kanalov (filtrov) v 
sistemu MIMO (multiple-input-multiple-output). Pri izpeljavi najprej privzamemo, da je 
meritev več kot izvorov, preučimo pa tudi možnosti dekompozicije, ko je meritev manj 
kot izvorov. Ovrednotimo še vpliv šuma, neortogonalnosti izvornih signalov in razmerja 
med številom meritev in številom izvorov.  
 
Raziskavo pričnemo z opredelitvijo ciljev slepe ločitve signalov in pregledom obstoječih 
metod. Osredotočimo se predvsem na ločitev konvolutivnih mešanic izvornih signalov, 
opišemo pa tudi najpogosteje uporabljene metode za ločitev multiplikativnih mešanic. 
Opisane metode kritično ovrednotimo in jih medsebojno primerjamo. V nadaljevanju na 
kratko opišemo anatomijo in fiziološke omejitve električnih signalov v človeških 
mišicah, poseben poudarek pa namenimo opisu nastanka, potovanja in ponora akcijskih 
potencialov v mišičnem tkivu. Razpravo nadaljujemo s pregledom obstoječih metod za 
dekompozicijo signalov EMG. Predstavljene metode kritično ovrednotimo in navedemo 
njihove prednosti in omejitve. Nazadnje definiramo pogoje, pod katerimi lahko 
večkanalne meritve površinskega EMG modeliramo kot sistem MIMO s končnimi, 
vzročnimi in časovno nespremenljivimi sistemskimi odzivi. 
 
V nadaljevanju izpeljemo tri splošne postopke za slepo ločitev skoraj ortogonalnih 
impulznih izvornih signalov. Najprej obravnavamo konvolutivne mešanice z več 
meritvami kot izvori in opišemo dva nova postopka za njihovo ločitev. Prvi temelji na 
časovno-frekvenčni analizi, drugi pa na statistikah višjega reda. Dekompozicijo nato 
razširimo na konvolutivne mešanice z več izvori kot meritvami. V okviru algebrajskih 



pristopov in statistik drugega reda razvijemo popolnoma nov koncept ločevanja 
konvolutivne mešanice, t. i. metodo z inverzom korelacijske matrike.  
 
Uspešnost izpeljanih postopkov preverimo na umetnih in realnih površinskih signalih 
EMG. Pri podajanju rezultatov vpeljemo ustrezne kvantitativne mere za vrednotenje 
opisanih postopkov in preučimo vpliv šuma in razmerja med številom meritev in številom 
izvorov. Rezultati na umetnih signalih potrjujejo superiornost metode z inverzom 
korelacijske matrike (metode IC). Če je meritev več kot izvorov, uspe metoda IC pri 
visokem razmerju signal-šum (SNR) popolnoma rekonstruirati skoraj vse inervacijske 
vlake impulzov simuliranih ME. V poddeterminiranem sistemu, kjer število izvorov za 
faktor 1,4 presega število meritev, uspe metoda IC popolnoma rekonstruirati približno 
polovico vseh simuliranih ME. Učinkovitost dekompozicije pada tudi z razmerjem 
signal-šum. V povprečju uspe metoda IC pri SNR = 0 dB rekonstruirati približno 30 % 
tistih ME, ki so bile rekonstruirane pri SNR = 20 dB. Rekonstruirani inervacijski vlaki 
impulzov pa se tudi pri nizkih razmerjih signal-šum skoraj popolnoma ujemajo z 
referenčnimi umetnimi vlaki. Preostali dve metodi sta manj učinkoviti.  
 
Metoda IC se izkaže kot najbolj učinkovita tudi pri realnih površinskih signalih, posnetih 
med izometrično konstantno 5- in 10-odstotno skrčitvijo dominantne mišice biceps 
brachii pri devetih mladih, zdravih poskusnih osebah moškega spola. Skupno metoda IC 
popolnoma rekonstruira inervacijske vlake 30 ME pri 5-odstotni mišični skrčitvi, oz. 56 
ME pri 10-odstotni mišični skrčitvi. Rekonstruirani inervacijski vlaki impulzov 
izpolnjujejo vse fiziološke omejitve.   
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1.  

Introduction 

Digital signal processing has become one of the most important tools in industry 
processes, research activities and many fields of science. It is also one of the fundamental 
building stones of the modern society. More and more of everyday activities rely on 
prompt and precise information, which is always mediated by the signals. Signal 
processing can be found everywhere, form the wide area of telecommunications, 
economy, seismology, radar and sonar applications, exploration of space, medicine and 
biology, down to the microcosm and quantum mechanics. The signals transmit the 
information about the world we live in and crucially influence our knowledge and 
understanding of the external world.   
 
Although the signals are often thought to be invented by the humans, they are quite 
common in the nature itself. Throughout the evolution various living beings learned how 
to process different signals from the external world. The most obvious examples of such 
a “natural” signal processing are the human senses of sight and hearing. They shape our 
everyday life. Yet, we are only beginning to understand the complicated processes in our 
brains behind them. Less obvious, but not less important, are the electrical signals in 
human muscles. They control the movement and give us the feedback about the muscle 
activation. Moreover, we can easily track the relative position of our arms, even 
blindfolded. This means the human brains are quite capable of calculating the inverse 
kinematics of our extremities, given just the electrical signals from the muscles. 
Considering the subject investigated in this dissertation probably the most interesting 
feature of our brains is their ability to separate the sounds of different sources out of their 
compound mixtures. This phenomenon can easily be observed at the parties. Even though 
there are several simultaneously speaking persons, we can easily focus on one of them 
and ignore the sounds from the others. Without even realizing we are performing one of 
the very difficult signal processing tasks, so called blind source separation.  
 
From the scientific point of view the signal processing is a wide research field. It includes 
noise and artefact removal, frequency analysis and synthesis, pattern recognition, coding 
and decoding, speech and image analysis, etc. Accordingly, many different theories and 
tools ranging from plain filtering, time-frequency and time-scale analysis, second- and 
higher-order statistics (HOS), to cepstral analysis and neural networks were developed in 
the past. One of the many tools which are becoming increasingly important is so called 
Blind Source Separation (BSS). Its goal is to reconstruct the original sources out of their 
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multiplicative or convolutive mixtures. Although being a relatively young scientific field, 
it has been successfully applied to many different areas.  
 
In this dissertation the separation of linear convolutive mixtures is addressed. Although 
there were many attempts in the past, no general method applicable to arbitrary 
convolutive mixture of optional signals exists. The approaches developed so far focus on 
specific mixtures and exploit the information offered by the maximum likelihood 
estimators [15, 27, 81, 84, 104, 126, 133], second- and higher-order statistic [33, 111, 
117, 123, 124, 134, 166, 167], and time-frequency and time-scale analysis [5, 84, 101, 
106, 109, 121]. Supposing mutually independent sources, they usually enable only the 
reconstruction of impulse responses, while the sources are generally reconstructed only 
up to an unknown filtering effect [17, 84, 106]. In our work we limit the discussion to the 
linear convolutive mixtures of pulse sources. The latter can be modelled as time-domain 
sequences of pulses, i.e. the time signals with their energy concentrated in the separated 
time moments – pulses. Except a common assumption on statistically independent 
sources, no information about the pulse sources or the coefficients of the mixing filters is 
supposed. However, we assume several concurrent measurements of the same source 
signals are given, i.e. so called multiple-input-multiple-output (MIMO) system.  
 
The assumed data model corresponds to biomedical and most of the telecommunication 
[75, 56, 58, 114, 148, 168, 169] signals and has been exploited by many approaches [9, 
18, 39, 49, 51, 60, 89, 94, 102, 103, 129, 144, 145, 171]. However, they all suffer from at 
least two major drawbacks. Firstly, the majority of decomposition techniques suppose the 
number of measurements greater than the number of sources. From the practical point of 
view, this is a highly critical assumption as there are many physical and physiological 
reasons speaking against it [56, 113]. Secondly, as mentioned above, the source signals 
are only partially reconstructed. To be exact, the state-of-the-art decomposition 
techniques work well only when the number of sources is small and their contributions 
(impulse responses) do not overlap significantly.  
 
In this dissertation, three novel approaches for blind decomposition of convolutive 
mixtures of pulse source signals are introduced. The possible routes towards a perfect 
reconstruction of pulse source signals and their impulse responses are examined, and the 
influence of noise and non-orthogonal (statistically dependent) source signals are 
evaluated. The identification of slightly underdetermined MIMO systems (systems in 
which the number of sources slightly exceeds the number of measurements) is also 
studied.  
 
The novel decomposition approaches are tested on surface electromyographic (SEMG) 
signals [19, 113, 146]. The latter comprise a large number of active sources with 
relatively short impulse responses. Namely, during voluntary contractions of skeletal 
muscles small functional groups of muscle fibres, called motor units (MUs), contract 
synchronously producing a measurable electrical signal called motor-unit action potential 
(MUAP). When recorded by an array of electrodes at low muscle contraction level, the 
MUs contributing to the SEMG signals can be treated as close-to-orthogonal pulse source 
signals whose cross-correlations do not exceed approx. 5-10 % of their maximal possible 
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values [56, 114, 139, 158]. The SEMG signals can, therefore, serve as a perfect example 
of convolutive mixtures of pulse source signals investigated in this dissertation. Finally, 
the application of developed techniques to the SEMG signals increases the value of our 
work, as a major step towards a complete reconstruction of constituent MUAP trains is 
made (see Section 3.2).   
 
To summarise, two different scientific fields; blind source separation and surface EMG 
decomposition are studied. Although all decomposition approaches are based on general 
pulse signals we frequently use the surface EMG signals to exemplify and illustrate the 
efficiency of applied solutions, or to simply demonstrate the complexity of convolutive 
mixture under investigation.    
 
The main assumptions and expected limitations are summarised in the following thesis: 
 
In the case of close-to-orthogonal pulse source signals and more measurements than 
sources, a complete blind reconstruction of convolutive mixing matrix and source pulse 
trains out of their convolutive mixture is possible. When the number of sources exceeds 
the number of measurements only a limited number of source signals can be completely 
reconstructed. Processing the surface EMG signal, the impulse responses correspond to 
the motor-unit action potentials, while the pulse source signals stand for the motor-unit 
innervation pulse trains.  
 
Enlightening the decomposition assumptions, possibilities and limitations at least three 
groups of hypotheses can be introduced. They separately address the expectations in the 
case of non-orthogonal source signals, in the case of more sources than measurements 
and in the presence of noise: 
 

1. In the case of more measurements than sources, a complete reconstruction of 
pulse source signals and their impulse responses out of their convolutive mixtures 
is possible. When the number of sources exceeds the number of measurements 
only the projections of source signals into the subspace of measurements can be 
observed. As a result, the impulse responses in the convolutive mixing matrix 
interfere and only a limited number of source signals can be completely 
reconstructed.   

 
2. Supposing mutually independent source signals, the influence of convolutive 

mixing matrix can be eliminated by the second- and higher-order statistics. When 
processing non-orthogonal source signals, the impulse responses in statistical 
moments and higher-order cumulants interfere what introduces additional errors 
to the decomposition process. As a result, the second- and higher-order statistics 
can be used to separate only orthogonal, or at least close-to-orthogonal, source 
signals whose pulses do not overlap significantly. Similar limitations can be 
encountered when using time-frequency analysis.    
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3. In noisy environments, only a limited number of source pulse sequences can be 
completely reconstructed. Their exact number depends on the signal-to-noise 
ratio and on the power of source signals. The latter (in the case of pulse signals) 
corresponds to the number of pulses and, consequently, to the source firing rate. 
The sources with higher firing rates are, therefore, expected to be more 
successfully recognised than the sources with lower firing rates. Among all the 
proposed approaches the methods based on HOS are expected to be superior in 
noise rejection. 

 
This dissertation is organized in 8 chapters. First, in Chapter 2, overview of the state-of-
the-art in the blind source separation is outlined. Many solutions from the multiplicative 
cases can be straightforwardly generalized to the convolutive ones. Hence, the different 
approaches to the decomposition of both multiplicative and convolutive mixtures are 
critically evaluated and mutually compared.  
 
In Chapter 3, the main principles of the anatomy and physiology of human muscles are 
briefly summarized. The descriptions given should only serve as a basis for the 
evaluation of the results on real SEMG (Chapter 6). Hence, the main focus is on the 
generation of action potentials in muscle fibres, MU firing frequencies, and the filtering 
effect of the subcutaneous tissue. Next, an overview of the state-of-the- art EMG 
decomposition techniques is given, along with their main pros and cons. Finally, the 
conditions under which the surface EMG signals can be modelled as linear, time-
invariant MIMO systems are enlightened.  
 
In Chapters 4 and 5, three novel approaches to the decomposition of convolutive mixtures 
of close-to-orthogonal pulse source signals are derived. First, in Chapter 4 the 
identification of overdetermined MIMO systems (systems with more measurements than 
sources) is studied and two novel decomposition methods introduced. The first one is 
based on time-frequency analysis, while the second one utilises the higher-order 
statistics. In Chapter 5, the decomposition is extended to slightly underdetermined MIMO 
systems. Based on algebraic approaches and second-order statistics, a novel concept of 
blind source separation, the so called inverse correlation based method, is introduced.   
 
In Chapter 6, the introduced decomposition methods are tested on both synthetic and real 
surface EMG signals. The influence of noise and non-orthogonal source signals are 
evaluated and the impact of different MU parameters studied, while in Chapter 7 the 
decomposition results are mutually compared. We conclude our work in Chapter 8 where 
the principal hypotheses are evaluated and the limitations of the introduced approaches 
are discussed.   
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1.1 Explanations of frequently used synonyms  
 
We have explained that two different areas (blind source separation and surface EMG 
decomposition) will be studied in this dissertation. Although we will try to strictly 
separate them, the basic terminology of both areas will be used. For example, when 
describing the EMG signals we will be talking about the innervation pulse trains and 
action potentials. On the other hand, deriving novel decomposition approaches we will 
use more general terms such as pulse source signals and system responses. While the 
innervation pulse trains can certainly be modelled as pulse signals, we will prefer to use 
more specific names whenever possible. General notations will only be used in Chapters 
4 and 5 in order to stress the generality of the derived decomposition methods.   
 
In the sequel, the most common terms from both areas (blind source separation and 
surface EMG decomposition) are clarified. They should not be understood as definitions. 
They are just explanations of the most frequently used synonyms. 
 
Pulse source: a source, whose signals can occupy only binary values 0 and a, where a 
denotes an arbitrary nonzero real number. Samples with value a are referred to as pulses. 
In the sequel, the term “pulse source” will frequently be used as a synonym for “source 
pulse signal”. Although this can induce some uncertainties, it is quite common 
convention in the field of blind source separation.   
 
Inter-pulse interval (IPI): time distance between two successive pulses in a source pulse 
train.  
 
Superimposition of signals: the element-wise sum of signals. In this dissertation, two 
different superimpositions – the superimposition of pulse sources and the superimposition 
of motor unit action potentials – will be studied.  
 
Close-to-orthogonal: the phrase “close-to-orthogonal” will be used to denote the sources 
whose cross-correlations do not exceed 10 % of their maximal possible values. In the 
cases of pulse sources, this implies only up to 10 % of pulses of two arbitrary source 
pulse trains can overlap.    
 
System response: the contribution to a single measurement caused by a single firing of a 
pulse source. It is commonly referred to also as a system impulse response and is defined 
in more detail in Section 3.3. In the sequel, the motor unit action potentials will be 
modelled as special forms of system responses.  
 
Motor unit (MU): a small functional group of muscle fibres which are innervated by the 
same alpha motor neuron and contract synchronously (Section 3.1). Throughout this 
dissertation, MU will be understood as an origin of the surface EMG signals, with its 
innervation pulse train as a close-to-orthogonal pulse source signal, and its action 
potential as a system response.    
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Innervation pulse train: the time sequence of action potentials in alpha motor neuron, 
which are transferred through neuromuscular junction to all the muscle fibres of the same 
MU. As they trigger the responses of MUs, actions potentials in motor neurons are 
commonly referred to as pulses. Throughout our work, the innervation pulse trains will 
be modelled as close-to-orthogonal pulse sources. From the blind source separation 
viewpoint, this is a very coarse approximation because  the pulses in neurons are at least 
a few ms long and occupy more than two different values (when sampled with high 
frequency). Nevertheless, only the MUs’ responses (MUAPs) to innervation pulse trains 
are measured by the surface electrodes, while the shape of neuron potentials do not 
impact the shapes of MUAPs. Therefore, action potentials in a motor neuron can be 
conceptually replaced by true binary pulses. The innervation pulse trains and MUAPs are 
described more in detail in Sections 3.1 and 3.2.  
 
Action potential (AP): a rapid change in the transmembrane potential in a neuron or 
muscle fibre triggered by electric, chemical or mechanical excitation of the fibre 
membrane. It is usually several ms long and propagates along the neuron or muscle fibre 
from its origin towards the end of the fibre.  
 
Motor unit action potential (MUAP): a superimposition of filtered action potentials of 
all muscle fibres comprising the corresponding MU as detected in a single EMG 
measurement. The subcutaneous tissue between a particular muscle fibre and a measuring 
electrode acts as a low-pass filter and attenuates the single fibre AP.  The MUAP shape 
depends on many physiological parameters (the MU depth in muscle tissue, the number 
of MU’s fibres, their conduction velocities, etc.), on the properties of the detection 
system (the type of spatial filter, inter-electrode distance, the shape of electrodes, etc.), as 
well as on the relative position of single fibres with respect to the detection point (the 
spatial filter position). The shape and the amplitude of MUAPs also vary as a function of 
the distance from the innervation zone. As a result, the MUAPs of different MUs, as well 
as MUAPs of the same MU measured at different positions in space, will differ 
significantly. In this dissertation, the MUAPs will be commonly modelled as special 
forms of system responses.  
 
Electromyogram (EMG): a time record of superimposed MUAP sequences from all 
MUs which are active in detection volume of measuring electrodes.  
 
Spatial filter: a configuration of pick-up electrodes used to measure a single EMG 
measurement. There are many possible electrode configurations (spatial filters). The 
simplest one is a unipolar electrode (Fig. 1.1 a). Single differential (SD) spatial filter (Fig. 
1.1 b) consists of two electrodes while the measurement is formed by subtracting the 
signals measured on both electrodes.  Double differential (DD) filter is depicted in Fig. 
1.1 d and comprises three electrodes. The EMG measurement is formed by, first, adding 
together the signals from two side electrodes and, afterwards, subtracting twice the signal 
from the central electrode. Spatial filter can also be classified according to their 
orientation with respect to the muscle fibres. Longitudinal spatial filters (Fig. 1.1 b and d) 
have their electrodes aligned with the muscle fibres, while in the case of transversal 
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filters (Fig. 1.1 c and e) the electrodes are placed transversal to the orientation of muscle 
fibres.     
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Figure 1.1: Spatial filters commonly used for surface EMG recoding: a – unipolar 
electrode, b – longitudinal single differential filter, c – transversal single differential 
filter, d – longitudinal double differential filter and e – transversal double differential 
filter. Electrodes are depicted by grey circles, while the corresponding numbers denote 
the weights with which the signals from electrodes are multiplied before they are 
summed up to yield the final EMG measurement. The muscle fibres are assumed aligned 
with the y axis.   



 8

 



 9

2.  

Blind source separation 

Blind source separation (BSS) [4, 24, 78, 79, 84, 88, 97] is becoming an increasingly 
important tool in the filed of signal processing. For the last decade it has been 
successfully applied to the areas of radar [32, 42, 79] and sonar signal analysis [78, 106], 
speech recognition [84, 106, 122, 81], telecommunications [5, 45], separation of seismic 
signals [151, 79], image processing [35, 162, 174] and, lately, to the analysis of 
biomedical data [149, 8, 87, 86, 105, 156, 175, 173]. Its goal is to reconstruct the original 
sources given just their multiplicative or convolutive mixtures. The mixing process is 
usually denoted by the so called mixing matrix, which is, of course, unknown. In the case 
of multiplicative mixtures, the mixing matrix consists of scalar factors (weights). In the 
case of convolutive mixtures, the mixing matrix comprises impulse responses of different 
channels (convolutive filters) [79, 106]. Usually several measurements of the same 
sources are available, which results in MIMO data model [33, 100, 163, 164].   
 
This chapter provides a short overview of the state of the art in the blind separation of 
linear mixtures. The main focus is on convolutive mixtures, although the methods 
separating the multiplicative mixtures are also described. There are at least two reasons 
for that. Firstly, many methods for separation of convolutive mixtures prove to be 
straightforward generalizations of the solutions developed for the multiplicative cases. 
Secondly, every convolutive mixture can always be reformulated into the multiplicative 
one, opening a possibility of solving it by the multiplicative BSS techniques.   
 
The decomposition techniques described in this chapter are classified with respect to their 
basic decomposition principle. In the case of multiplicative mixtures (Section 2.1), the 
methods based on the maximization of non-Gaussianity, maximum likelihood estimators, 
and time structure of sources, are discussed. Although the main focus is on the separation 
of overdetermined MIMO systems, the methods separating the underdetermined MIMO 
systems are also described. Section 2.2 outlines possible routes towards separation of 
linear convolutive mixtures. The methods based on maximum likelihood, Fourier 
transform, and reformulation of the convolutive mixture to the multiplicative one are 
briefly summarized. Major assumptions, along with pros and cons of each group of 
methods, are also presented.  
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2.1 Separation of linear multiplicative mixtures  
 
In the case of linear multiplicative mixtures the mixing channels are assumed to be 
memoryless, i.e. the mixtures are supposed to be instantaneous, depending only on the 
current values of the sources, while no delayed versions of the same source can be mixed 
together. In the assumed data model the sources are first multiplied by the unknown 
factors (weights) and, afterwards, summed up to form the observed measurement: 

∑=
j

jiji nshnx )()( ,   (2.1) 

where )(nxi  denotes the i-th measurements, ijh  is unknown mixing factor, and )(ns j  
stands for the j-th source. We commonly suppose the factors ijh  constant in time. 
Another common assumption is that the number of observed measurements exceeds the 
number of sources.  
 
Using the matrix notation, (2.1) can be rewritten as 

)()( nn Hsx = ,   (2.2) 
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There are many approaches to the blind separation of multiplicative mixtures. The 
decomposition techniques are based on mutual information and Kullback-Leibner 
divergence [2, 3, 130, 10, 80, 28], on second- and higher-order statistics [5, 13, 30, 41, 
65, 66, 67, 73, 84, 108, 110, 123, 124], on time-frequency [6, 14, 17, 21, 37, 73, 84, 120] 
and time-scale analysis [84, 9, 148, 171], on algebraic [4, 11, 29, 38, 68, 84, 112, 173] 
and geometric approaches [28, 84, 82, 118, 135] and, finally, on the maximum likelihood 
estimators [10, 15, 126, 133]. The majority of them supposes independent and identically 
distributed (i.i.d.) sources (the source samples are modelled as independent, equally 
distributed random variables) [4, 22, 23, 24, 38, 78, 152]. It has been shown [61, 79, 84] 
that the separation of i.i.d sources is possible only if at most one source has Gaussian 
distribution. The other BSS methods consider the case of temporally correlated sources 
[13, 65, 66, 97, 153]. Identifiability in such an approach is granted even when the signals 
are normally distributed. The third possible route to multiplicative BSS is to exploit the 
inequalities in the source sample distributions, i.e. non-stationarities of sources [14, 17, 
21, 37, 73, 120]. 
 
In the sequel, the most frequently used groups of methods for separation of linear 
multiplicative mixtures of sources are coarsely outlined. Their detailed overview can be 
found in [4, 24, 84, 106]. 
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2.1.1 Separation by maximization of Nongaussianity 
 
Vast majority of the multiplicative BSS methods are based on the central limit theorem, 
which states that the distribution of a sum of i.i.d. random variables tends toward a 
Gaussian distribution. In other words, supposing the samples of sources i.i.d. non-
Gaussian random variables, the central limit theorem guarantees that their linear mixture 
is more Gaussian than any of the original samples. Moreover, the mixture becomes least 
Gaussian exactly when it equals to the sample of one of the sources. Hence, in the 
separation process we look for such a separation matrix which maximizes the non-
Gaussianity of the measurements. Although the exact distributions of the measurements 
are usually unknown, we can always estimate them out of the signal samples.  
 
The non-Gaussianity of the measurements can also be estimated indirectly. One of the 
most frequently used measures utilizes higher-order cumulants [111, 166, 167]. They are 
known to be zero for all the Gaussian random processes. This fact is effectively utilized 
by the separation methods which typically use the gradient based optimization in order to 
numerically maximize the values of third- or higher-order cumulants of measurements. 
The second possible measure of non-Gaussianity is negentropy [84]. It is defined as a 
difference between the entropy of the observed random variable and the entropy of the 
Gaussian random variable with the same mean and variance. Being nonnegative and zero 
if and only if the observed random variable is Gaussian, it is very natural measure for the 
optimisation. 
 
The main drawback of the methods that use cumulant-based or negentropy-based 
measures is that they do not distinguish among the sources. In the optimisation process 
the global maximum is found, which implies only one source can be successfully 
reconstructed. To reconstruct several sources, the separation algorithm must be run 
several times using different initialization points. It is easy to see that this is not a reliable 
solution. More consistent methods combine the results of the described approaches with 
different orthogonalization algorithms which utilize the mutual orthogonality of the 
whitened vectors of measurements [82, 83]. With their help all the sources can be 
reconstructed.  
 

2.1.2 Separation based on maximum likelihood 
 
A second, very popular class of multiplicative BSS methods comprises the maximum 
likelihood (ML) estimators. Given the probability density of the sources and their mixing 
matrix, the likelihood function of the mixture can be derived from the well-known result 
of density of a linear transformation [84, 126]. Usually, due to its algebraic simplicity, the 
logarithm of the likelihood is numerically optimized. This makes no difference, since the 
maximum of the logarithm is obtained at the same point as the maximum of the 
likelihood. ML-based methods simply try to find the mixing matrix (and the source 
probability densities) which gives the highest probability for the observations. The 
numerical maximization of the likelihood function is usually performed by different 
gradient-based algorithms [15, 48, 126, 133].  
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The log-likelihood function of the mixture is, in general, function of both the elements of 
the mixing matrix and the probability densities of the sources. The former are considered 
the parameters of the assumed data model and can easily be optimized. The optimization 
of the source probability densities is much more difficult problem, because, in general, 
their estimation cannot be reduced to the estimation of a finite parameter set. There are 
two possible ways to avoid the nonparametric density estimation [15, 27, 84, 126, 133]: 
 

1. Sometimes the densities of the sources (or at least their family) might be known in 
advance. In this case this prior information can be used in the optimization 
process, making the log-likelihood function dependent of the mixing matrix only.  

 
2. The unknown densities can also be approximated by a family of densities that 

depend on a finite and small set of parameters. Usually, very simple and general 
parameterizations of the densities yield satisfactory results.    

 
The class of ML-based separation methods comprises many different solutions. Among 
them, the methods based on the infomax principle [10, 27], entropy and Kullback-
Leibner divergence [28, 80, 82], and mutual information [131, 72, 84] are the most 
popular. Their main drawback is their computational complexity.  
 

2.1.3 Separation of time signals  
 
The BSS methods considered so far model the source samples as i.i.d non-Gaussian 
random variables. Measuring non-Gaussianity of the mixtures, they can only be used for 
separation of mixtures with at most one Gaussian source. In the case of two or more 
Gaussian sources, the described approaches fail [13, 14, 28, 84] and we are forced to seek 
for an alternative solution. Often the observed sources are time signals. As such they 
contain much more structure than the simple set of strictly independent random variables. 
This structure can then be used to improve the separation, or even to make it feasible. 
Actually, exploiting their time structures also Gaussian sources can be separated.  
 
In the past, two large families of the time-structure based methods evolved. The first one 
exploits the time dependencies among the samples in each source. In other words, the 
samples of each source are modelled as dependent, identically distributed random 
variables. The large majority of the representatives of this family employs so called joint 
(simultaneous) diagonalization of several correlation matrices at different time lags [13, 
16, 28, 31, 66].  
 
The second family of the time-structure based methods takes advantage of the 
nonstationarity of the sources. Here, the source samples are modelled as independent 
random variables with time-dependent (nonstationary) distributions. Most of the 
representatives of this family rely on time-frequency analysis and on the fact that the 
mixing matrix is invariant to the Fourier transform [14, 21, 37, 73, 132]. 
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Due to their simplicity and implicit capability of separating the Gaussian sources, the 
time-structure based methods gained a lot of interest over the past few years. Many 
efficient solutions were proposed for both multiplicative and convolutive mixtures. One 
of many possible routes towards the separation of convolutive mixtures is described in 
Section 4.1. 
 

2.1.4 Identification of underdetermined system 
 
So far we supposed the linear multiplicative mixtures have more measurements than 
sources. The described separating methods aimed to estimate the mixing matrix, while 
the sources were reconstructed by simply applying the inverse of the mixing matrix to the 
measurements. This is no longer the case when the mixtures with more sources than 
measurements are processed. In such a case, the mixing matrix cannot be inverted any 
more and the exact values of the sources cannot be reconstructed, even if we know the 
mixing matrix exactly. Hence, the separation of the underdetermined systems is a 
difficult problem and can be compared to the mathematically well understood problem of 
solving an underdetermined system of equations. Although infinitely many possible 
solutions exist, we can usually gain satisfactory results by limiting the properties of the 
sources [69, 81, 84, 104]. 
 
Separating the underdetermined system we face two large problems. First, we have to 
estimate the mixing matrix, and second, we have to estimate the unknown source signals. 
Supposing the mixing matrix known, the sources can be estimated by applying its 
pseudo-inverse to the measurements [68, 92]. Although simple, this is not the optimal 
solution. Much more consistent approach is based on the maximum likelihood estimator 
[27, 84, 126, 133]. The problem with the ML estimator is that it cannot be expressed in 
analytic form and must be optimized numerically, which highly increases its 
computational complexity.   
 
In general, the mixing matrix is unknown and must be estimated from the measurements. 
Again, the most popular approaches are based on the ML estimators. Among them, so 
called Monte Carlo methods based on the Bayesian estimation and numerical integration, 
are becoming increasingly important. The most popular methods of this family utilize so 
called Gibbs sampling to estimate the missing probability densities [125, 59]. Their 
drawback is that they are very computationally demanding. Much more attractive are the 
so called orthogonalization methods [84, 96] which are based on a rather unrealistic 
assumption of quasi-orthogonal columns of the mixing matrix.   
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2.2 Separation of linear convolutive mixtures  
 
There are at least two reasons why the multiplicative mixtures are relatively rare in 
practice. First, measuring the observed signals with the array of sensors, the finite 
propagation speed of the signals induces different time delays of the same source in 
different measurements. Second, due to the multi-path propagation in the observed 
medium each measurement contains different time-delayed versions of the same source. 
This calls for the convolutive mixture model, i.e. the model, where the contribution of 
each source to each measurement is modelled by a convolution. Taking MIMO system 
into consideration, the i-th measurement can be expressed as 
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where )(ns j  and )(lhij  denote the unknown source and finite convolution filter, 
respectively. The goal behind the separation of convolutive mixtures is to reconstruct the 
convolutive filter )(lhij  and the sources )(ns j , given just the measurements )(nxi . As in 
the multiplicative case, the samples of the sources are assumed to be i.i.d. random 
variables, with unknown probability densities.  
 
The separation of convolutive mixtures appears in the literature under many different 
names: multichannel blind deconvolution, blind identification of MIMO systems, 
independent component analysis (ICA) with convolutive mixtures, multichannel blind 
identification, etc. The approaches developed so far are based on ML estimators [16, 27, 
84, 100, 133], time-frequency analysis [17, 98, 101, 106, 109, 119, 121, 128, 157] and 
reformulation of the convolutive mixtures to the multiplicative ones [17, 70, 75 154].  
Supposing mutually independent sources, they usually enable only coarse estimations of 
the convolutive filters, while the sources are generally reconstructed only up to the 
unknown filtering effect [17, 44, 84, 106, 119].  This section provides a quick overview 
of the most popular decomposition techniques.  
 

2.2.1 Maximum likelihood based approaches 
 
As already explained in the previous section, the ML based methods are of the most 
popular ones. Being based on the probability density of the sources, they are inherently 
capable of capturing the prior knowledge about the sources. Moreover, they often provide 
the superior performance and can easily be extended to the underdetermined case. Their 
main drawback is their computational complexity. 
  
It should not come as a surprise that the ML estimators can also be extended to the 
convolutive case. Actually, the proposed solutions are more or less direct generalizations 
of the solutions developed for the multiplicative cases [17, 98, 101, 106, 109, 121, 119, 
128, 140, 157]. Being based on numerical optimisation of a large number of unknown 
parameters, they inherently suffer from a high computational complexity and slow 
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convergence. Although numerous attempts to speed them up were made in the past, the 
effective solutions were proposed only for the simplest convolutive model possible, the 
so called single-input-single-output (SISO) system.  
 

2.2.2 Separation in time-frequency plane 
 
The largest, and probably the most effective class of convolutive BSS methods utilises 
the Fourier transform. It is based on well known fact that the convolution in the time 
domain becomes the product between the Fourier transforms in the frequency domain. In 
other words, using the time-frequency transformation, the convolutive mixture can be 
transformed into a set of multiplicative mixtures in the time-frequency domain [17, 101, 
106, 109, 121, 119, 157, 128, 98].  
 
The main drawback of the time-frequency based methods is that we have to estimate the 
mixing matrix for every possible frequency bin. This is not a trivial problem, due to the 
implicit indeterminacy of the multiplicative BSS problems (Section 3.3.2). Namely, no 
matter how successful the decomposition, when compared to the original sources, the 
reconstructed sources can always appear randomly permutated and even multiplied by the 
unknown scaling factor. Reconstructing the sources in the frequency domain, the 
permutation and the scale of the sources is generally different for every frequency bin. To 
be able to reconstruct the source in the time domain, we must first find the way how to 
find the frequency components that belong to the same source. This problem has been 
known as a permutation problem and has been intensively studied in the past [119, 157, 
128]. The most effective solutions utilize the spectral continuity of the sources [141 127], 
information about the direction of arrival (DOA) [85, 128] and various combinations of 
the abovementioned solutions [84, 157]. Nevertheless, the permutation problem remains, 
especially when decomposing large convolutive MIMO systems. As a result, the time-
frequency methods have only been applied to relatively small overdetermined MIMO 
systems, with no more than 10 simultaneously active sources. 
 

2.2.3 Reformulation of convolutive mixture into multiplicative one 
 
By adding the delayed repetitions of each source to the vector of sources 

T
N nsnsn )](),....,([)( 1=s , every convolutive mixture can be transformed into the 

multiplicative one (see Section 3.3) and solved with one of many possible solutions 
mentioned in Section 2.1. Although the number of sources is highly increased, this is a 
very attractive solution as there is no permutation problem. The main drawback of such a 
solution lies in the statistical properties of the newly formed sources which (at least in 
general case) are not statistically independent anymore. This proves to have a crucial 
impact on the separation performance. Although many attempts to overcome this setback 
were made, the up-to-date methods enable only reconstruction of sources up to the 
unknown filtering effect [11, 17, 75].      
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3.  

Electromyogram 

Electrical activity of muscles has been under the scientific investigations for centuries. 
Already in the 18th century, Galvani discovered a surprising property of muscles, which 
contract when elicited by the electrical stimulation. He also showed the muscle responses 
can be measured in the form of electrical potentials. In 1929, Adrian and Bronk used 
concentric needle electrode to measure the electrical potentials inside the live skeletal 
muscle. Studies that followed revealed the secret behind the electrical signals in the 
muscles. It was soon realized how the muscle fibres are organized into the basic building 
blocks of muscles, so called motor units (MUs) and numerous studies of their electrical 
properties emerged. 
 
For a long time, the EMG recordings have been based on the expensive and invasive 
needle electrodes. It was only in the second half of the previous century when the 
investigations of so called surface EMG (SEMG), i.e. the EMG measured by the 
electrodes placed upon the skin surface, emerged (Basmajian 1974, Deluca 1984, Merletti 
and LoConte 1995). Due to their implicit non-invasive nature, surface electrodes have 
numerous advantages [76, 99, 134, 166, 167, 170, 161]. There is significantly less 
discomfort, what allows for unlimited repetition of the long-term electromuscular 
monitoring in exactly the same place. Furthermore, recording of surface EMG is 
inexpensive and gives global information about muscle activity [19, 58, 113, 146]. 
Nevertheless, the SEMG hasn’t made its way to the clinical practice yet. This is mainly 
due to the poor morphological information caused by the filtering effects of the 
subcutaneous tissue. Moreover, there is usually a large number of active MUs in the 
detection volume of a surface electrode, causing the detected signals to be highly 
complex. Many attempts to enhance the single MU information in SEMG were made in 
the past, nevertheless, the decomposition of the SEMG signals remains a very delicate 
process.  
 
This chapter provides a short overview of main principles behind the muscle activities. 
The main focus is on the generation and extinction phenomena of the action potentials in 
muscle fibres, and on the filtering effect of the surrounding tissue. These descriptions will 
serve as a basis for evaluation of decomposition results in Chapter 6. In Section 3.2, the 
state of the art in the decomposition of both needle and surface EMG is briefly outlined, 
while in Section 3.3 the mathematical model of SEMG which will be used in this 
dissertation is formulated. 
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3.1 Physiology of human muscles 
 
 
Human muscles consist of 10 to 150 mm long and 5 to 90 µm thin muscle fibres, which 
are in the tendon regions attached to the bones. Their orientation varies substantially 
between the muscles. Although the muscle fibres can be aligned with the direction of the 
tendons, they more often form a non-zero angle with them. Beside the muscle fibres, the 
muscle tissue comprises various other structures: nerves, blood vessels, connecting tissue, 
etc. There is also a layer of subcutaneous fat separating the muscle from the skin.   
 
Each muscle fibre is innervated by a single motor neuron which transmits the control 
commands from the central nervous system in a form of the firing pulse trains. Normally 
several muscle fibres are innervated by the same neuron, forming a basic functional unit 
of the muscles, so called motor unit (MU). The number of fibres in each MU varies 
considerably between the muscles. The smallest MU can be found in the eye muscles and 
comprise less than 10 fibres. The largest MU belong to the large leg muscles and 
combine more than 2000 fibres [137]. The size of MU varies considerably also within the 
same muscle. It is important to notice that the fibres belonging to the same MU are not 
adjacent to each other, but rather spread in space within the radius of approx. 2 to 15 mm.  
 
Considering the time needed to achieve their peak tension the muscle fibres can be 
classified into two disjunctive classes: slow or type I, and fast or type II. The fibre type is 
determined by the central nervous innervation. Consequently, all the fibres from the same 
MU are of the same type, while all muscles comprise all types of MUs. The area of 
neuromuscular junctions between the muscle fibres and motor neuron is called 
innervation zone. Although the fibre is always innervated approximately in the middle 
between both tendons, the location of the innervation zone can vary considerably with 
respect to the muscle belly (the fibres are usually not parallel to each other).   
 
Every pulse in motor neuron triggers a contraction of MU’s fibres. During a voluntary 
contraction the whole sequences of pulses, so called innervation pulse trains, are 
transmitted by the motor neuron. The number of pulses per second, i.e. MU firing rate, 
depends on the type of muscle fibres and on the muscle contraction level. At low 
contraction levels the small and slow MUs of type I are first activated. Their firing rate 
varies between 6 and 10 Hz. When the contraction force is increased, larger MUs of type 
I, as well as the fast MUs of type II are activated. Their firing rates hardly exceed 20-30 
Hz, under the normal conditions. By increasing the firing rate, the contractions triggered 
by each individual pulse in motor neuron are merged together to form constant and 
smooth muscle contraction.  
 

3.1.1 Motor unit action potentials 
 
Every pulse in the motor neuron triggers a brief change in the transmembrane potential of 
the muscle fibre, so called action potential (AP). This is mainly caused by the change of 
the membrane’s permeability to sodium (Na+) ions, which are located in the space 
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between the muscle fibres. The Na+ ions enter the fibre and cause the depolarization of 
the transmembrane potential which changes its sign from the negative (approx. -70 mV) 
to the positive one (approx. +20 mV). Afterwards, the membrane’s permeability to 
sodium ions decreases, while the permeability to potassium ions K+ increases. Outflow of 
the K+ ions causes the repolarisation of the transmembrane potential. Finally, using the 
Na+/K+  pumps the Na+ and K+ ions are actively transported out of and into the muscle 
fibre, respectively [47].  
 
A fibre (and therefore a motor unit) cannot be activated again until the AP due to a 
previous activation is almost completed. This is well known as a refractory period. In 
addition, during sustained muscle contractions, single MU fire at most 20-30 pulses per 
second. In rare cases there may be so called “doublets”, that is two firings of the same 
MU separated by only 10-15 ms.  
 
The AP in the muscle fibre is initiated at the neuromuscular junction and propagates in 
both directions towards the tendon regions where it is gradually suppressed. The AP 
amplitude (approx. 100 mV), duration (3 to 5 ms) and its propagation/conduction velocity 
(3 to 5 m/s) depend both on the fibre diameter and on its type. The single fibre AP can be 
measured also in the close vicinity of the muscle fibre. The passive electric media 
surrounding the muscle fibres acts as a low-pass filter which decreases the AP amplitude 
and increases its duration. Moreover, the contributions from different muscle fibbers can 
be thought summed together [56, 60, 89]. As a result, measuring the electrical potential at 
an arbitrary position in space, the AP from different fibres will appear superimposed in 
both time and space. Again, due to the filtering effect of the surrounding tissue, the 
contributions from the fibres that are close to the measuring site will be stronger [138]. 
Usually, the detected AP from all the fibres belonging to the same MU are thought to be 
summed together forming so call motor unit action potential (MUAP). The 
superimposition of the single fibre APs can now be replaced by the superimposition of 
MUAPs. It is very important to realize this is nothing else but a very practical 
convention, which highly reduces the number of the components in the detected signal, 
while still enabling a study of the MU’s properties.  
 
It is also important to realize the shape of MUAP can vary enormously with the position 
of the detection point. MUAPs from the same MU, detected at different positions in 
space, will differ substantially from each other. Not only will they have different time 
delays (due to the finite speed of the MUAP propagation along the fibres), the filtering 
effect of the surrounding tissue, as well as the differences in the single fibre conduction 
velocities, will cause them to differ substantially in shape, length and amplitude. Even 
bigger differences can be expected between the MUAPs of different MUs. As already 
explained, the MUs differ in both the number and the type of muscle fibres. Fast MUs 
will have shorter and higher AP than the slow ones.   
 
Although being ambiguous and implicitly dependent on the many hidden factors, the 
term MUAP is well established in the field of biomedical signal processing, as well as in 
the filed of neurophysiology. 
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3.2 EMG decomposition 
 
Decomposition of the EMG signals to constituent MUAP trains has proved to be a very 
important clinical issue. Reconstructed sequences of innervation pulses provide the basis 
for research studies and clinical examinations of MU control properties, recruitment 
strategies, inter-pulse interval (IPI) variability, short term MU synchronization, and 
myoelectrical manifestation of fatigue, to name just a few areas of investigation. The 
existing computer-aided EMG decomposition methods have been mainly focused on the 
intra-muscular EMG signals [1, 18, 20, 39, 49, 51, 60, 64, 89, 94, 102, 103, 129, 143, 
144, 145]. Being based on pattern recognition [43] and clustering in the time domain, on 
spatial filters, and on time-frequency and time-scale analysis, they typically exploit the 
differences in morphology of MUAPs and comprise two steps. Firstly, individual MUAP 
is identified from the raw inter-muscular EMG or from their time-frequency/time-scale 
transforms. Secondly, the identified MUAP is classified and assigned to the best fit class 
of previous decomposed MUAP shapes. The most frequently used measures include the 
correlation and amplitude, length and shape of MUAPs. In the case of multichannel 
EMG, the decomposition results from different EMG recordings can be mutually 
compared, which significantly improves the decomposition efficiency. Unfortunately, 
most of the methods fail when a large number of MUAPs become superimposed, the 
complete decomposition is possible only if the number of simultaneously active MUs is 
relatively small. On the other hand, even at low contraction levels, sufficiently large 
number of MUs contracts asynchronously to produce highly complex interference 
patterns.  
 
Most recent pattern recognition decomposition techniques make use of the solutions from 
graph theory and artificial intelligence to cope with the complex superimposed MUAPs 
patterns [18, 95, 159]. Their main goal is to reduce the set of possible MUAP 
combinations in order to speed up the decomposition of the detected pattern. They build 
upon different priors about the MU firing patterns to predict the most probable solution. 
Artificial intelligence based methods have another nice property. They constantly 
reassess their own results and learn from the mistakes. As a result, they are capable of 
adapting to the time-varying properties of the detected signals. Their results are quite 
promising and the most successful approaches have already been transferred to the 
everyday clinical practice [95, 159]. Unfortunately, their use is restricted to the needle 
EMG, while in the case of surface EMG signals the decomposition fails. 
 
In the case of needle EMG, the contributions of MUs are relatively strong (with the 
amplitude of approx. 100 mV) and short (about 10 ms). On the contrary, in the case of 
surface EMG, the filtering effect of subcutaneous tissue attenuates the morphological 
differences of MUAPs, decreases the MUAP amplitude (to approx. 100 µV), while the 
MUAP duration is highly increased (up to 25 ms). Moreover, in the case of needle 
electrodes we can selectively observe the action potentials of only a few active motor 
units, or even of a single muscle fibre. In the SEMG case, on the other hand, we deal with 
several tens of active MUs and the measurable contributions from other muscles not 
being under the clinical investigation, what is often referred to as muscle cross-talk [57]. 
Consequently, surface EMG comprises highly complex patterns [165] and the approaches 
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proposed for the decomposition of needle EMG fail. Nevertheless, the non-invasive 
nature of SEMG and its wide potential to offer global information about the muscle 
activity opened numerous application areas. The information extracted from the SEMG 
signals is being exploited in several different clinical studies mainly concerned with the 
timing of the muscle activation [54, 116], the EMG amplitude modulation [36], changes 
in the frequency content of the EMG signals [7, 55], and the conduction velocity 
estimation [53].  
  
Many attempts to enhance the single MU information and to suppress the cross-talk in 
SEMG were made in the past. As already mentioned, the first approaches, which were 
based on the methods for separation of needle EMG, soon proved to be ineffective. 
Meanwhile, the SEMG acquisition became a rather developed and matured measuring 
technique, providing all the required reliability, robustness, and repeatability. Flexible 
high-density 2D arrays of electrodes have been developed, opening the possibilities of 
recording up to a few tens or even hundreds of the SEMG measurements simultaneously. 
Furthermore, with the development of the computer power more sophisticated and 
computationally complex separation techniques, capable of processing and combining the 
information from such a large multichannel recordings, became feasible. Among the most 
popular ones are certainly the methods based on neural networks [91, 161].  
 
The second class of the surface EMG decomposition approaches comprises the time-
frequency and time-scale based methods. The former became a popular tool for 
extraction of information out of the dynamic EMG, i.e. the EMG signals recorded during 
the dynamic muscle contractions. In such a case, the recorded signals can be modelled as 
nonstationary and the time-frequency analysis seems to be quite a natural tool for them. 
Taking the large number of active MUs, their time-varying firing rates, and their complex 
activation and deactivations patterns into account [50], also the signals recorded during 
the isometric contractions can be modelled as nonstationary. Nevertheless, the time-
frequency based methods proved to have limited success when it comes to the separation 
of surface EMG signals.  
 
On the other hand, the methods based on time-scale analysis try to find the mother 
wavelet which would perfectly resemble the properties of the one of the detected MUAPs 
[9, 148]. The construction of such a perfect wavelet is highly critical. First, it depends on 
the shape of detected MUAPs, and, secondly, it is highly time-consuming. Moreover, 
even if we find a perfect mother wavelet, it is highly unlikely that it will be able to 
significantly suppress the contributions from other MUs. Consequently, the wavelet-
based decomposition gained little prosperity.  
 

Only recently some more sophisticated decomposition methods have begun to emerge. 
Exploiting the advanced blind source separation techniques (Section 2) they provide new 
insights of clinical interest as they, for example, make their way towards the removal of 
artefacts [8, 105, 150, 156, 160], cross-talk suppression [52] and the identification of the 
EMG constituent MUAPs [4, 62, 172]. Nevertheless, the decomposition of the SEMG 
signals to their constituent MUAP trains, even at low muscle contractions, remains a very 
delicate process. Although the analysis of individual MUs and their firing patterns is very 
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important in the clinical electromyography [34, 40, 50, 53, 63, 90, 113, 144, 142, 147, 
158], no approach developed so far enables their complete reconstruction based on 
SEMG signals only. 

 

3.3 Assumed data model of surface EMG signals 
 

EMG recordings can be modelled as a multi-channel linear, time-invariant system, as 
long as they have been taken in stable, controllable, and stationary measurement session. 
This implies an isometric muscle contraction and avoiding of the appearance of fatigue-
induced changes. Dealing with sampled multi-channel EMG recordings, the discrete, 
shift-invariant MIMO modelling is most feasible. Each source (channel input) in such 
MIMO system is considered a MU innervation pulse train triggering the muscle, while 
the system responses (channels) correspond to the MUAPs as captured by a spatial filter 
(pick-up electrodes). The individual EMG measurements represent the model outputs.  

 
The shapes of system responses in the assumed MIMO system are of no importance. 
Hence, any property of MU (e.g. its depth in the muscle tissue, the number of fibres and 
their conduction velocities, etc.), as well as the properties of the detection system (the 
spatial filter used, inter-electrode distance, etc.) influencing the shapes of MUAPs can be 
modelled in the system responses. As explained in Chapter 1, we will often interchange 
the terms “MUAP” and “system response”. Although in this thesis both expressions will 
denote the same thing, we will prefer to use the term “system response” whenever we talk 
about the BSS, and the term “MUAP” whenever we talk about the EMG.  

 
Let now )(lhij  denote the (i,j)-th system response, i.e. the MUAP of the j-th MU as 
detected in the i-th measurements. Further suppose all the system responses (MUAPs) of 
length L samples (if the system responses differ in length they can always be padded by 0 
to reach the same length). Then the contribution of the j-th source (MU) to the i-th 
measurements can be modelled by the following convolution:  
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where )(ns j  stands for the j-th source. Taking into account the linearity of the modelled 
MIMO system, the i-th measurement can be written as a sum of contributions from all the 
sources (MUs):  
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where, assuming multiple inputs and outputs, vector notations follow: 
T

M nxnxn )](),....,([)( 1=x  for the transposed vector of M surface EMG measurements, 
and T

N nsnsn )](),....,([)( 1=s  for the vector of N pulse sources.  
 
When the influence of noise is considered we get:  
 

)()()( nnn ωxy +=  (3.3) 
 
where T

M nynyn )](),....,([)( 1=y  denotes the transposed vector of M noisy measurements, 
and T

M nnn )](),....,([)( 1 ωω=ω  stands for the noise vector. The assumed data model is 
depicted in Fig. 3.1. 
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Figure 3.1: Assumed convolutive MIMO system with sources )(ns j , system responses 
)(lhij , measurements )(nxi , noise )(niω , and  noisy measurements )(nyi . The operation 

of convolution is depicted by rectangles, addition with circles. 

 
We have explained the shape and the length of the system responses depend on numerous 
parameters (detection system, the depth of the MU in the muscle tissue, the number of 
muscle fibres constituting the corresponding MU, etc.). But the physiological properties 
of the muscles guarantee the system responses are limited in their amplitude and length: 
 

∞<∑
−

=

1

0
)(

L

l
ij lh ,  i=1,...,M, j= 1,...,N (3.4) 

  
which implies the stability of the modelled MIMO system. We can further assume the 
assumed MIMO system is casual: 
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0)( =lhij ,   l<0,   i=1,...,M, j= 1,…,N. (3.5) 
 
Throughout this thesis, we will often suppose the system inputs )(ns j  mutually 
independent, with their cross correlations equal to zero:  
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where sR  denotes the correlation matrix of sources, )(nHs  conjugate transpose of the 
vector of sources s(n), diag[] stands for the diagonal matrix with its parameters on the 

diagonal, and )()(1lim *

1
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 for the autocorrelation function of source )(ns j  

with )(* ns j  as a complex conjugate value of )(ns j . Dealing with the biomedical signals 
the sources are not strictly orthogonal, while their cross correlations hardly exceed the 10 
to 15 % of their maximal possible value. Where needed, the non-ortogonality of sources 
will be carefully outlined.  
 
The additive noise T

M nnn )](),....,([)( 1 ωω=ω is commonly modelled as stationary, 
temporally and spatially white zero-mean Gaussian random process, independent from 
the sources: 
 

Iωω )()]()([ 2 τδστ =+ nnE H  (3.7) 
 
where E[:] stands for mathematical expectation, )(τδ  for the Dirac impulse (delta 
function), 2σ  for the noise variance, and I denotes the identity matrix. 
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3.3.1. Extension of the convolutive MIMO vector form  
 

Convolutive relationship described in (3.2) can always be expressed in the matrix form: 
 

)()( nn sHx =  (3.8) 
 
where H stands for the so called mixing matrix of size NLM ×  which contains the unit 
sample responses )(lhij : 
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where 

[ ])1(,),2(),1(),0( −= Lhhhh ijijijijij …h  

 
(3.10) 

denotes the L×1  vector of (i,j)-th systems response. The extended vector of sources 
)(ns takes the following form: 

 
T

NN LnsnsLnsnsn )]1(),....,(),....,1(),....,([)( 11 +−+−=s . (3.11) 
 
Supposing more measurements than sources, a positive integer K can be found which 
satisfies: 
 

)1( −+> KLNKM . (3.12) 
 
Extend the vector of noisy measurements )(ny  by K-1 delayed repetitions of each 
measurement:  
 

T
MM KnynyKnynynyn )]1(),....,(),....,1(),....,1(),([)( 111 +−+−−=y . (3.13) 

 
Extending the noise vector )(nω  in the same manner, (3.8) evolutes to   
 

)()()( nnn ωsHy += . (3.14) 
 



 26

The mixing matrix H is now of size )1( −+× KLNKM  and still comprises the system 
responses )(lhij : 
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with )1( −+× KLK  matrix 
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The extended vector of sources )(ns now yields: 
 

T
NN KLnsnsKLnsnsn )]1(),....,(),....,1(),....,([)( 11 +−−+−−=s . (3.17) 

 
In (3.8) and (3.14) we intentionally used the same notation for the two different mixing 
matrices. This introduced some level of ambiguity in our notations. However, in order to 
keep the equations simple and clear the mixing matrix will always be denoted only by H. 
When needed, the factor K will be defined explicitly. 
 
The extension of Eq. (3.8) to the over-determined system of Eq. (3.14) is not an 
innovation. In fact, it is a common approach when dealing with the convolutive mixtures 
of sources and has been extensively used in the past [46]. For the clarity reasons we 
briefly explained only its main ideas.  
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3.3.2. Ambiguities of blind source separation   
 

The goal in blind source separation is to identify the mixing matrix H and to reconstruct 
the sources )(ns  given only the vector of measurements )(nx . However the blind 
separation hides two implicit ambiguities [8, 9, 46]. 
 
BSS Ambiguity 1: It is impossible to determine the order of the sources, because with 
both the vector of sources )(ns  and the mixing matrix H unknown any permutation of 
sources (and columns in H) is a solution of  (3.14) [46].  

 
BSS Ambiguity 2: Without any further information it is impossible to determine the 
variance (energies) of sources, because any scalar multiplier can be exchanged between 
an arbitrary source and the corresponding column of the mixing matrix H: 
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where iα  denotes an arbitrary scalar multiplier and ih  stand for the i-th column of 
mixing matrix H.  
 

Although different scalar factors iα  change the values of both the extended sources 
)(nsi and the corresponding columns H we won’t change their denotations. We are going 

to use the denotations H and )(ns , even though in some sections the values of the scalar 
factors iα  will be exactly defined. If not explained differently, throughout the 
dissertation both ambiguities will be neglected. 
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4.  

Decomposition of convolutive 
mixtures of sources – more 
measurements than sources 

In previous chapters, we introduced the main principles of blind source separation and 
gave a brief overview and evaluation of the state of the art in the decomposition of 
convolutive mixtures. We further described the properties of human muscles, explained 
the process of generation, conduction and extinction of motor unit action potentials, and 
discussed the different surface EMG recording techniques (spatial filters). We identified 
the main problems in surface EMG decomposition and briefly evaluated the existing 
decomposition techniques. Finally, we focused on the multi-channel surface EMG and, 
using the terminology of the communication theory, pointed out the conditions under 
which the surface EMG can be modelled as a linear, shift-invariant MIMO system.  
 
In this chapter (and the next), we one will derive three novel decomposition approaches. 
We will first examine the overdetermined case with more measurements than sources and 
describe two different ways towards our final goal – the decomposition of convolutive 
mixtures of close-to-orthogonal pulse sources.  
 
The first approach, derived in Section 4.1, is based on the time-frequency analysis and 
utilises the solutions introduced by A. Belouchrani and M. Amin [14]. We briefly discuss 
their work and show how their ideas can be extended to the case of pulse sources in order 
to estimate both the mixing matrix H and the sources )(ns  up to the unknown scalar 
factor. The second decomposition algorithm is based on higher-order statistics and is 
derived in Section 4.2. We demonstrate how higher-order cumulants can be applied to a 
MIMO system to get a very robust estimation of the system responses )(lhij . The third 
approach, the so called inverse correlation based method, is treated in the subsequent 
chapter, where we discuss the underdetermined case (the case with more sources than 
measurements). For each novel approach the influence of noise and non-orthogonal 
sources is also analysed.   
 
It is of high importance to realize that the novel approaches assume general pulse sources 
and do not depend on the type of the mixing matrix. They only suppose the mixing 
matrix stationary and the average inter-pulse distance greater than the length of the 
system responses. The latter is certainly true in the case of EMG signals, where the MU 
firing frequency is usually well below 30 Hz, while the average length of MUAPs can be 
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estimated to 20-25 ms. The latter guarantees all three approaches can be applied to 
surface EMG signals, as demonstrated in Chapter 6. 
 
Let us now assume the number of sources does not exceed the number of measurements 
and derive the first decomposition approach, the so called method based on time-
frequency distributions.  
 
  
4.1  Method based on time-frequency distributions 
 
Time-frequency (TF) analysis is one of the most frequently used tools in the filed of 
signal processing. It also plays an important role in blind source separation, because it 
enables us to separate sources with Gaussian distribution. Although it is most frequently 
used for separation of multiplicative mixtures [14, 17, 73, 120], it is becoming more and 
more important also when it comes to the separation of convolutive mixtures [4, 17, 33, 
84].   
 
Very efficient approach to separation of multiplicative mixtures of nonstationary sources 
was introduced by A. Belouchrani and M. Amin [14]. Their method exploits the 
differences in energy locations of sources in TF domain and is based on the joint 
diagonalization of spatial matrices which are constructed from the time-frequency 
distributions of all possible pairs of measurements. Similar approach was also suggested 
for the convolutive cases [17, 84]. By extending the vector of measurements with the 
delayed repetitions of each measurement (Subsection 3.3.1) every finite convolutive 
mixture of sources can be rewritten in the matrix form. But, as described in the sequel, 
this introduces some novel difficulties which prevent the exact reconstruction of 
convoluted sources.  
 
The section is organized in five subsections. In Subsection 4.1.1, we briefly define the 
time-frequency distributions. Subsection 4.1.2 summarizes the main ideas of the 
approach that was introduced by A. Belouchrani and M. Amin, along with its main pros 
and cons. The extension of the approach to the case of pulse sources is given in 
Subsections 4.1.3 and 4.1.4. We study the influences of non-orthogonal sources and 
introduce some measures and procedures for overcoming their disturbing influences. We 
conclude our discussion in Subsection 4.1.5 where the influence of noise is carefully 
outlined, along with some possible countermeasures.  
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4.1.1 Discrete time-frequency distributions 
 
The discrete TF distribution of Cohen class for signal xi(n) is defined as [37]: 
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where n and f denote time and frequency indices, respectively, *

ix  is complex conjugated  
value of ix , and ),( lmφ  stands for the kernel that characterises the TF distribution. Cross 
TF distribution of signals xi(n) and  xj(n) is defined as [37]:  
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Using definitions in (4.1) and (4.2) we construct the so called spatial TF distribution 
(STFD) matrices of extended measurements )(nx [14]: 
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where H denotes matrix conjugate transpose. ),( fnxxD  is a four-dimensional data 
structure whose (i,j)-th element equals the discrete (cross-) time-frequency distribution of 
measurements )(nxi  and )(nx j : 
 

[ ] ),(),( , fnfn
ji xxji DD xx =     for   i,j=1,...,N. (4.4) 

            
Neglecting the noise and taking into account the linearity of the assumed MIMO system 
we can write: 
 

Tfnfn HHDD ssxx ),(),( =  (4.5) 
            
where, for every fixed index pair ),( fn , ),( fnssD  denotes the STFD matrix of extended 
sources.  
 
In the sequel, the off-diagonal elements of ),( fnssD  matrices (values of cross-TF 
distributions) will be referred to as crossterms, while the diagonal elements of ),( fnssD  
will be called autoterms.  As a result, matrices ),( fnssD  will be diagonal if and only if 
all their crossterms will be equal to zero [73].   
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4.1.2 Separation of general sources 
 
The blind separation approach introduced by A. Belouchrani and M. Amin [14] is based 
on assumption of more measurements than sources and comprises two steps. In the first 
step the extended vector of measurements (n)x , defined in subsection 3.3.1, is whitened 
by the )1( −+× LKNKM matrix B, which satisfies    
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where sR  stands for the correlation matrix of extended sources and xR  for the 
correlation matrix of extended measurements. Denoting the matrix square root of sR  by 

 2
1

sR it is obvious from (4.6) that 2
1

sBHRU =  is a unitary matrix of size 
)1()1( −+×−+ LKNLKN . The whitening step has, therefore, reduced the mixing 

matrix H of size ( )1( −+× LKNKM ) to the unitary matrix U of size 
)1()1( −+×−+ LKNLKN . The B matrix can be constructed as a matrix square root of 

the inverse of the xR  matrix [13, 14].   
 
For the whitened vector of extended sources )(nz  the linearity of the modelled MIMO 
system still holds: 
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Multiplying the ),( fnxxD  matrices by B yields the whitened STFD matrices of extended 
measurements [14, 17]: 
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Even when the sources )(ns  are orthogonal, the extended sources )(ns  do not need to be 

and the matrices sR  and  2
1

2
1

),( −−
ssss RDR fn  are in general block diagonal. According to 

(4.8) any whitened STFD matrix ),( fnzzD  is block diagonal in the basis of the columns 
of U and the missing unitary matrix U can be retrieved by block joint diagonalization of 
set of ),( fnzzD  matrices in different TF points (n,f) [12, 17]. The algorithm of joint 
block diagonalization is a generalization of well-known Jacobi’s technique for 
diagonalization of Hermitian matrices and is described in more detail in [12]. 
 
Knowing the matrices B and U, the mixing matrix H can be estimated as [13, 14]: 
 

UBH #= ,  (4.9) 
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where # denotes Moore-Penrose pseudoinverse. However, due to its inherent ambiguity 
the joint block diagonalization technique introduces an unknown block diagonal unitary 
matrix D [12, 17]. Therefore the original sources can be reconstructed only up to the 
unknown filtering effect [17]: 
 

)()()( 2
1

nnn H
e sDRxBUs s

−== , (4.10) 
         

where matrices D and 2
1−

sR  are unknown. 
 

4.1.3 Blind separation of pulse sources 
 
A. Belouchrani and M. Amin considered general orthogonal sources with nonorthogonal 
delayed repetitions of each source. On the other hand, the energy of pulse sources is 
concentrated around the unknown time moments (pulses). Furthermore, dealing with the 
biomedical signals, such as the EMG, the upper limit of the MU firing frequency (Section 
3.1.1) guarantees also the extended sources are orthogonal as long as the maximal delay 
in measurements does not exceed the minimal inter-pulse interval. Considering the BSS 
ambiguity 2 the correlation matrix of extended sources can now be written as: 
 

IssRs =∑=
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)()(1lim
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nn
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nT
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This eliminates the unknown matrices sR  and 2
1−

sR  in (4.7), (4.8) and (4.10). The only 
unknown left is the block diagonal matrix D in (4.10), which is introduced by the joint 
block diagonalization [12, 17]. Block diagonalization can now be replaced by joint 
diagonalization [25, 31], what would enable reconstruction of sources up to a scalar 
factor. However, to be able to use the joint diagonalization we must ensure the STFD 
matrices ),( fnssD  which enter the reconstruction of unknown matrix U are also 
diagonal. 
 
Generally speaking, the ),( fnssD  matrices are, even in the case of pulse sources, block 
diagonal. The reason is hidden in the kernel ),( lmφ  of TF distributions, which is used to 
average the sources in time and, hence, spread the information around pulses. Excluding 
the kernel ),( lmφ , (4.1) yields the so called Wigner-Ville TF distribution 
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But new problems arise. The Wigner-Ville spectra suffer high sensitivity to the 
crossterms (values of cross TF distributions), which, again, make the source STFD 
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matrices block diagonal. Namely, the cross Wigner-Wille distribution of the i-th and j-th 
sources in an arbitrary time point nk is a summation of all the pulses from the i-th and  j-
th sources, which satisfy the following relation: 
 

)( ,,2
1

qjpik nnn +=  (4.13) 
                                           
where ),(, ∞−∞∈qp  and pin ,  ( qjn , ) denotes the time moment in which the p-th (q-th) 
pulse of the i-th (j-th) source appeared. In other words, the cross TF distribution 

),( fn
ji ssWV  differs from zero in every time moment which lies between the arbitrary 

pulses of the i-th and j-th source.   
We can reduce the number of pulses contributing to ),( fn

ji ssWV  by shrinking the 

calculation of the Wigner-Wille distribution in (4.12) to the finite interval [-a,a]:   
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where a denotes an arbitrarily large positive integer number. Setting the limit a to zero, 
all the crossterms are left out and the ),( fnssD  matrices begin to show their diagonal 
structure.  The TF distribution in (4.12) now yields: 
 

)()()(),( * nxnxnfn jixxxx jiji
== PWVD . (4.15) 

            
Having ensured the diagonality of the ),( fnssD  matrices, we can use the joint 
diagonalization [13, 14, 25, 26, 31] of a set of )(nxxPWV  matrices to reconstruct the 
missing unitary matrix U and the sources up to a scalar factor:  
 

)()()( nnn H sAxBUs ==  (4.16) 
 
where A is unknown diagonal matrix.   

4.1.4 Decomposition of close-to-orthogonal sources 
 
In the previous subsection we supposed the sources strictly orthogonal. This implies 
several restrictions that are hard to meet in reality. Processing the EMG signals, for 
example, the innervation pulse trains will be independent only at very low levels of 
muscle contractions. When the contraction level increases the innervation trains become 
more and more correlated (up to 10 % or 15 %) and their pulses begin to overlap. 
Moreover, by extending the vector of measurements (Subsection 3.3.1) we have virtually 
increased the number of sources from NL to N(L+K-1), which further decreases the 
assumed orthogonality of sources.    
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Let },....,{
000 ,,1 npnn jjG =  denote a set of indices of sources which all trigger in a given 

time moment n0 (they all share the overlapped pulse at n0). ),( 0 fnssD  matrix will be far 
from diagonal as it will have 2p  elements different from zero (all autoterms and all 
crossterms at the positions that are contained in 

0nG ). A large number of such matrices 
will cause the join diagonalization to reconstruct a wrong unitary matrix U. To be exact, 
using the eigendecomposition Tfn ΛΛ= ΛUUD ss ),( 0  we can write 
 

TTTfnfn UΛUUUUUDD sszz ΛΛ== ),(),( 00  (4.17) 
 
which proves that the diagonalization of ),( 0 fnzzD  produces the unitary matrix ΛUU .  
 
There is yet another condition that has to be met when using the joint diagonalization. To 
guarantee the uniqueness of the reconstructed unitary matrix U, the set of STFD matrices 
entering the joint diagonalization must contain the contributions of all active sources, 
including their delayed repetitions [26, 73]. But, to guarantee their diagonality in the 
column-space of matrix U, the matrices entering the joint diagonalization must contain 
the contribution of a single source only. This implies that we must diagonalize at least 

)1( −+ KLN  STFD matrices ),( fnzzD  (one for each source).  
 
In other words, to guarantee the reconstruction of original mixing matrix (and 
consequently the reconstruction of original sources) we must be able not only to 
distinguish between the diagonal and nondiagonal ),( fnssD  matrices, but also to 
distinguish the contributions of different sources. With unitary matrix U unknown we can 
only rely on the information contained in the ),( fnzzD  matrices.  
 
Let ),( fni

ssD  denote the diagonal STFD matrix of sources with a single nonzero 
autoterm dii  at the i-th diagonal position (i.e. with contribution from the i-th extended 
source). Bearing in mind that U is unitary we can derive the following relation:  
 

0),(),(),(),( == Tjiji fnfnfnfn UDUDDD sssszzzz , if  ji ≠ . (4.18) 
 
Denote by ),( fnij

ssD  the STFD matrix of sources with contributions of the i-th and j-th 

extended source. ),( fnij
ssD  will have four nonzero elements dii, dij, dji and djj at the 

positions (i,i), (i,j), ( j,i) and ( j,j), respectively. We derive 
 

0),(),(),(),( ≠= Tiijiij fnfnfnfn UDUDDD sssszzzz  (4.19) 
 
and 

0),(),(),(),( ≠= Tjijjij fnfnfnfn UDUDDD sssszzzz . (4.20) 
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According to (4.18), (4.19) and (4.20) the STFD matrices of sources (and, hence, also the 
STFD matrices of whitened measurements) with a contribution from a single source form 
the orthogonal basis of )1( −+ KLN -dimensional space. 
 
Define the following measure: 
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where trace(M) denotes the sum of diagonal elements of matrix M (the matrix trace). We 
can then easily check the following relations: 
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where dii and djj stand for the (i,i)-th and (j,j)-th element of ),( fnij

ssD , respectively. 
 
The quest for ),( fni

zzD  matrices with contributions from single, but different sources 
has now reduced to much easier problem of finding the orthogonal basis of the 

)1( −+ KLN -dimensional space. This is a very important result as the criterion function 
(4.21) enables us to control the ),( fnzzD  matrices entering the joint diagonalization, 
and, consequently, guarantees the uniqueness of matrix U. We must still ensure the set of 
the ),( fnzzD  matrices entering the joint diagonalization contains the matrices with 
contributions from all the sources.  
 
Suppose now we fail to find the matrices with a single nonzero autoterm of the i-th 
source. We are than forced to include the non-optimal ),( fnzzD  matrices with 
contributions of the i-th and several other sources. In order to minimize the devastating 
influence of crossterms [73], we have to ensure the number of sources contributing to the 
selected ),( fnzzD  matrices is as small as possible. We can still rely on criterion function 
(4.21) and on the fact that the trace of a matrix equals to the sum of its diagonal elements:  
 

jjii
ij ddfntrace +=)),(( zzD . (4.24) 

 
The selection of the optimal ),( fnzzD  matrices using the criterion (4.21) is described in 
more detail in [71]. 
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4.1.5 Noise influence 
 
Minimizing the interval [a,a] on which the Wigner-Ville distribution is calculated we 
annulled the time averaging of measurements and, hence, lost the averaging of the zero-
mean noise. As a result, we reduced the robustness of the presented approach and 
exposed it to the influence of noise [13, 14, 37, 84]. The time averaging can be partially 
replaced by averaging of the ),( fnzzD  matrices with contributions from a single (not 
necessarily the same) source:  
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where 
 

TTnnfn BωωBD ωω )()(),( =  (4.26) 
 
denotes the influence of noise )(nω . Recall the noise is modelled as Gaussian, white and 
zero-mean (Subsection 3.4): 
 

),()( 2I0ω σNn ∝  (4.27) 
 
where 0 stands for 1)1( ×−+ KLN  vector with all elements equal to zero, while the sign 
∝ should be read as »distributed according to«. Then the noise influence in (4.25) can be 
expressed as: 
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The noise variance 2σ  can be estimated from the correlation matrix xR  (the exact 
procedure is explained in Section 5.2), while the whitening matrix B is known. This 
allows us to simply subtract the influence of noise from (4.25). 
 
The influence of noise can further be reduced by averaging the reconstructed sources 
 

)()( nn H xBUs = . (4.29) 
 
As stated in (3.17), the presented decomposition approach will reconstruct (L+K-1) 
delayed repetitions of each source, which can be aligned in time and averaged afterwards.   
 
Nevertheless, the noise will also influence the criterion (4.21), which guarantees the 
uniqueness of the reconstructed matrix U. We can, therefore, expect a drop of 
performance in the environments with strong noise and heavily overlapped sources.   
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4.2 W-slices and higher-order cumulants 
 
 
The theory of higher-order statistics (HOS) has been well established, also in the field of 
MIMO systems [33, 41, 111, 117, 123, 124, 134, 166, 167]. It has been shown that the 
system’s responses can be deconvolved whenever the system’s input can be modelled as an 
independent identically distributed (i.i.d.), zero-mean, random white noise [111, 166, 167]. In 
addition to the system identification, HOS are frequently applied to the field of radar and 
sonar signals, image processing, seismology, and also speech analysis. Although suffering 
from a very high computational complexity, HOS-based methods have many nice properties. 
They can be successfully applied when the number of sources highly exceeds the number of 
measurements, while the superimpositions of impulse responses do not hinder a thorough 
decomposition. Moreover, by being insensitive to all Gaussian random processes the 
cumulants of order higher than two are also inherently resistant to the Gaussian noise.  
 
In the last decade the use of HOS has expanded to the field of blind source separation [4, 
107, 111, 166, 167]. Supposing the sources independent non-Gaussian random processes, 
the central limit theorem assures the distribution of their sum converges towards the 
Gaussian distribution. Because all higher-order cumulants of the Gaussian process equal 
zero, the HOS can be used as a measure of the nongaussianity of the mixed sources and, 
hence, serve as a basic criterion in source decoupling. This idea has been used in 
numerous blind source separation approaches. Their comprehensive overview can be 
found in [4, 84]. 
 
In this chapter, we will study one of many possible routes towards the HOS-based MIMO 
system identification, the so called w-slices. The method is based on Barlett-Brillinger-
Rosenblatt equation [111] and enables reconstruction of the system’s responses. The fact 
that the pulse sources cannot be modelled as i.i.d. white random noise does not corrupt 
the cumulants, as long as they are computed at the lags that do not exceed the minimum 
inter-pulse distance. As already explained, dealing with biomedical signals, the minimum 
inter-pulse distance exceeds the length of the modelled system responses, i.e. the length 
of MUAPs (Section 3.1.1). 
 
In the subsequent subsections, we first briefly outline the definition of higher-order 
cumulants. We explain the theory behind the w-slices and extend it to the field of the 
MIMO systems. We also discuss its application to the convolutive mixtures of pulse 
sources and demonstrate its capability to resist the Gaussian noise. We further show that 
w-slices can be used to compute only a coarse estimation of system responses, and 
describe the Newton-Gauss method [61] for their optimisation. We conclude the chapter 
with the discussion about the influences of the noise and of nonorthogonal sources.    
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4.2.1 Higher-order statistics  
 
Given a set of random variables MXX ,....,1 , their joint cumulant of order  r is defined by  
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where rkk M =++1  and ),...,( 1 MωωΦ  denotes the joint characteristic function of the 
variables MXX ,....,1 : 
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M eE ωωωωω ++=Φ .  (4.31) 

 
For a stationary discrete time random process )(nX  the cumulant of order r is defined as 
a cumulant of the random variables )(),....,(),( 11 −++ rnXnXnX ττ : 
 

))(),...,(),((),...,,( 11121, −− −+= rrXr nXnXnXcumC τττττ .  (4.32) 
 
The cumulant definition in (4.30) is highly theoretical. In order to calculate the exact 
values of cumulants one should know the distributions of the observed random variables. 
In practice, we often rely on the fact that the r-th order cumulant can be expressed with 
the moments of the r-th and lower orders. Supposing )(nX  zero-mean the third order 
cumulant, for example, can be written as:  
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Suppose now the inputs (sources) in our MIMO system i.i.d., white and zero-mean 
random processes. According to the Barlett-Brillinger-Rosenblatt equation [111], the 
cumulant of the measurements )(nx  can be written as: 
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where 

jsr ,γ denotes the central value in the r-th order cumulant matrix of source jS : 

 
)0,....,0(,...,, jjj sssr C=γ . (4.35) 
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Let H(l) denote the matrix which comprises all system’s responses: 
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According to (3.2) we can write 
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Define now the m-th matrix of the third order cumulants of measurements, where m 
( Mm ≤≤1 ) corresponds to the fixed measurement: 
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Using (4.34) and (4.38), the  ),( 21 ττmC  matrix can be rewritten as [166] 
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where iΓ , i=1,...,N, denotes the cumulant matrix of sources with a single nonzero 
element 

is,3γ at diagonal position (i,i): 
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),( 21 ττmC  is a four-dimensional structure which contains third-order auto-cumulants of 

measurement xm(n) and all cross-cumulants with this measurement. According to (4.38) 
and (4.39) the cumulants can be calculated in two different ways. They can be estimated 
out of the system outputs (4.38), or determined from the model (4.39). If the two matrix 
equations are made equal at fixed lags τ1 in τ2, a system of non-linear equations appears, 
whose solution leads to unknown system responses hij(l) and input skewness 

is,3γ . If the 
system responses are of length L, the total number of unknowns equals 
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NNML +  (4.41) 
 
where M stands for the number of measurements, N for the number of sources and L for 
the length of system responses. The first term in (4.41) stands for the unknown samples 
in responses hij(l), and the second for the unknown skewnesses 

is,3γ  (the inputs are 
supposed temporally and spatially uncorrelated) .  
 
On the other hand, we need at least that many non-linear equations as we have unknowns. 
The number of possible equations depends on different values obtainable in ),( 21 ττmC . 

In general, the third-order auto-cumulant matrix ),( 21,, ττ
iii xxxC  generates 

2
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different values, the cross-cumulant matrix based on 2 different measurements 

),( 21,, ττ
jii xxxC  contributes 

2
)13( −LL , while the cross-cumulant matrix based on 3 

different measurements contributes 1)1(3 +−LL  different values. When dealing with a 
MIMO system with N inputs and M outputs, the total number of different third-order 
cumulant matrices in ),( 21 ττmC  is as follows: 1 auto-cumulant matrix, 2(M-1) cross-

cumulant matrices based on 2 measurements, and 
2

)1)(2( −− MM  cross-cumulant 

matrices based on 3 measurements. Thus, the total number of different cumulant values 
in ),( 21 ττmC  yields: 
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The system of nonlinear equations can be resolved and thoroughly decomposed whenever 
(4.42) computes higher than (4.41). In spite of this theoretical result, all the errors 
accompanying the cumulant estimation hinder successful closed-form decomposition in 
practice. It has been shown, however, that a solution may be found through non-linear 
optimisation [61]. The corresponding search for the global optimum needs an 
initialisation point which begins the optimisation in the vicinity of the global solution. In 
other words, to find the system channel responses, i.e., the MUAPs in our case, a 
cumulant-based optimisation must begin with as good approximation of these responses 
as possible. 
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4.2.2 Coarse estimation of system responses: w-slices 
 
Among various approaches having been proposed for MIMO system identification, we 
want to rely upon those with as little a priori information needed as possible. One of them 
is so called w-slice method [155]. Beside the minimum number of system channels to be 
modelled, the only additional information needed in this approach is about the values of 
the starting samples of system-channel responses, as we will see in the sequel. 
 
MIMO w-slice method is based on a presumption that such a matrix of weights 
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exists that the following relationship can be derived: 
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where 
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and )(lδ  denotes the Dirac impulse. From (4.44) it follows 
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Hence, the causal part ( 01 ≥τ ) of matrix ),( 21 ττmC  can be used to identify the system’s 
responses.  
 
Recall the system responses are causal (Subsection 3.4):  
 

0)( =lhij ,  l<0,   i=1,...,M, j= 1,…,N. (4.47) 
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Therefore, for the anti-causal part ( 01 ≤τ ) of the matrix ),( 21 ττmC  Eq. (4.46) yields: 
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when 01 =τ , and 
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when 01 <τ . Let the indices ),( 21 ττ  extend over the length of the system responses 

)11( −≤≤+− LL iτ . Further let  
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denote the anti-causal, and  
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the causal part of entire cumulant matrix ),( 21,, ττ

kji xxxC . According to (4.48) and (4.49)  

we can write: 
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where T

ij
T

ijijij
a
ij hLhhh ]0,...,0),0([)]1(),...,1(),0([ =+−−=h  denotes the anti-causal part of  

the system’s response )(lhij , while 
 



 44

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

MMM

M

ww

ww
W

1

111

, (4.53) 

 
with 
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stands for the entire matrix of weights. In the same way, the causal part of (4.46) can be 
rewritten as: 
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where T

ijij
c
ij hLh )]0(),...,1([ −=h  stands for the causal part of the system response )(lhij .   

 
The results in (4.52) and (4.55) are independent of the fixed measurement m. Hence, the 
different rows of the left-most matrix in (4.52) and (4.55) can be constructed out of the 
cumulants with the different fixed measurements m. Combine now the anti-causal and 
causal parts of all auto-cumulants and all cross-cumulants based on two different 
measurements into the matrices Sa and Sc, respectively:  
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According to (4.52) and (4.55), the matrix of weights W can be computed as: 
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where ]0,...,0,1[=E  and ]0,...,0[=0  stand for the vectors of length L and # denotes the 
Moore-Penrose matrix pseudoinverse. The right-hand side of (4.58) guarantees the 
uniqueness of the weights W, however, it forces the channel responses hij(l) to begin by 1 
if i=j, and by 0 otherwise.  
 
Finally, the system responses can be calculated as: 
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where T

ijij
c
ij hLh )]0(),...,1([ −=h stands for the causal part of the system response )(lhij . 

 
Matrices Sc and Sa comprise only auto-cumulants and cross-cumulants based on the pairs 
of different measurements. As already explained, the different rows of matrices Sc and Sa 
can be formed by calculating the cumulants with different fixed measurement m. By 
selecting all possible values of m in (4.56) and (4.57), we have simply increased the 
computational stability, as all different cumulants were used to estimate the system 
responses.  
 

4.2.3 Nonlinear optimisation of coarse estimates   
 
The coarse approximations of the system-channel responses, given by (4.59), can further 
be improved by non-linear optimisation, as proposed in [61]. The core of the method is 
Newton-Gauss iteration which completes non-linear minimisation of cost function )ˆ(θV : 
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where the c  and ĉ  vectors are obtained by placing the transposed rows of the matrix   
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in column one bellow the other. 
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C  in (4.61) denotes the entire cumulant 

matrix of measurements i, j and k. The vector ĉ  is constructed with the cumulants Cijk 
estimated according to (4.38) from the system outputs (these are considered the reference 
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values to be fitted in the optimisation procedure), while )ˆ(θc  corresponds to the 
cumulants computed from (4.39) at each step of iteration (their values are being 
optimized). The vector of parameters 
 

[ ]
NssMNMN LhhLhhLhh ,3,312121111 ,...,),1(,),0(),...,1(,),0(),1(,),0(ˆ

1
γγ−−−= ………θ  (4.62) 

 
combines the values of the system responses and input skewnesses estimated at a certain 
step of iteration, while Σ stands for the asymptotically normalized covariance matrix of 
errors [61, 68]:  
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where E denotes mathematical expectation, and T the length of MIMO outputs. In 
practice, the matrix Σ  is replaced by its estimate 
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where indices p, P indicate that cumulants in Pp,ĉ  are calculated according to (4.33) only 

over the samples from 1)1( +−=
P
Tpn  to 

P
Tpn = , and P is a positive, arbitrary large 

integer, but much smaller than T. 
 
Minimization of the cost function (4.60) is carried out by iterating the Newton-Gauss 
update formula until the convergence is reached [61]: 
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where 
θ
θc
ˆ

)ˆ(
∂

∂   denotes the Jacobian matrix of )ˆ(θc  and 1ˆ −Σ  the matrix inverse of 

projection of Σ  onto the space of positive semi-definite matrices. 1ˆ −Σ  is calculated by  
setting all the negative eigenvalues of matrix Σ  to zero, while the positive eigenvalues  

iλ  are replaced by their reciprocal values 
iλ

1  [68, 115]. The step size iδ  is determined 

by using a line search algorithm at each iteration (e.g. the method of bisection, cubic 
interpolation, Newton’s method, etc.), while the derivatives, forming the Jacobian matrix  

θ
θc
ˆ

)ˆ(
∂

∂  are defined in Appendix 4A. 
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Input skewnesses γi cannot be optimized by Newton-Gauss iteration. The reason is that 
the derivatives of cumulants with respect to the skewnesses can be expressed as a linear 
combination of derivatives with respect to system responses:  
 

  
mj

M

m

q

n
mj

jj h
nh

∂
∂

∑ ∑=
∂
∂

= =

)ˆ()(
3
1)ˆ(

1 1

θcθc
γγ

. (4.66) 

 
Including the unknown skewnesses γi into the optimisation iteration causes the Jacobian 

matrix 
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1
1

ˆ
)ˆ(ˆ

ˆ
)ˆ(

−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂

∂

∂

i

i

i

T
i

θ
θcΣ

θ
θc  in (4.60). Instead, the unknown γi should be estimated from the 

cumulants in (4.38) and (4.39): 
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where vector [ ]TNγγ1=γ  combines the skewnesses of all inputs. Matrix ),ˆ( 2τθSijk  
consists of the auto- and cross-cumulants of system responses:  
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while the vector ),0(ˆ 2τijkc  combines L cumulants of measurements: 
 
 ))]()1()(()),...,()0()(([),0(ˆ 222 τττ +−+++= nxLnxnxcumnxnxnxcum kjikjiijkc , (4.69)
 
with arbitrary measurements i, j and k ( ],...,1[,, Mkji ∈ ). Although the input skewnesses 

[ ]TNγγ1=γ  can be estimated at the optional values of indices i, j, k and lag 2τ , it is 
advisable to repeat the calculation for several different sets of values and to average the 
results afterwards.  
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4.2.4 Influence of non-Gaussian noise and nonorthogonal sources 
 
The w-slices and Newton-Gauss optimization are based on the Barlett-Brillinger-
Rosenblatt equation. The latter supposes all the cross-cumulants of different sources 
equal to zero, i.e. it assumes the sources are independent. When the source pulses 
overlap, the cross-cumulant can not be neglected any more and the Barlett-Brillinger-
Rosenblatt equation from (4.34) yields:  
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where ),...,( 2,...,1 Mss llC

Mjj
 denotes (cross-) cumulant of sources 

Mjj ss ,...,
1

. An increase 

of the number of overlapped pulses increases the values of cross-cumulants and, 
consequently, the differences between the cumulants in (4.38) and (4.39). As a result, the 
w-slices and Newton-Gauss will try to match Eqs. (4.34) and (4.70), which will lead to a 
wrong estimation of the system responses.   
 
A similar effect can be observed in the presence of non-Gaussian noise 

T
M nnn )](),....,([)( 1 ωω=ω . Supposing Tn)(ω are independent of sources the Barlett-

Brillinger-Rosenblatt equation yields: 
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where ),...,( 11,...,1 −rrii

C ττωω  denotes the cumulant of noise.    
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Appendix 4A: Derivatives of cumulants   
 
 
Let 
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denote the general (cross-) cumulant value at the arbitrary lags 1τ  and 2τ  and observe all 

possible derivatives 
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a) derivatives of the auto-cumulant  (i.e. i=j=k): 

 

  

)];()(

)()()()([
)(
),(

21

211122
21

ττ

ττττττγττ

+++

++−−++−−=
∂

nhnh

nhnhnhnh
nh

c

iqiq

iqiqiqiqq
iq

iii

 
(4A.2)

 
b) derivatives of cross-cumulants  based on two different measurements (i.e i=j≠k, 

i≠j=k, or i=j≠k): 
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(i=k≠j) 
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  (j=k≠i) 
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c) derivatives of cross-cumulants based on three different measurements (i.e. i≠j≠k):  
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5.  

Inverse correlation based method 

In previous chapters, two novel approaches to blind source separation of convolutive 
mixtures were introduced, the method of time-frequency distributions and w-slices. First 
we showed how joint diagonalization of STFD matrices can be utilized to estimate the 
mixing matrix and pulse sources up to a scalar factor. We identified the devastating 
influence of crossterms and explained how they can be avoided. The two main drawbacks 
of the presented method turned up to be its inability to confront the heavy noise, and the 
need to find at least one non-overlapped pulse of each source. While the first problem can 
partially be solved by averaging the STFD matrices, the second problem is much more 
serious. Keeping the number of sources small and sources orthogonal, the task of 
selecting the not-overlapped pulses is trivial. In the case of close-to-orthogonal sources 
and high signal-to-noise ratio the candidate pulses can be selected using the criterion in 
(4.21). But, by increasing the number of sources, the probability of finding the non-
overlapped pulses drops drastically, and the efficiency of the presented approach 
decreases. Moreover, being sensitive to noise, the criterion (4.21) also causes a drop of 
performance in noisy environments.  
 
On the other hand, being based on HOS, w-slices and Newton-Gauss optimisation are 
inherently resistant to the Gaussian noise. Unfortunately, they can only be used to 
reconstruct the system responses, while the information about the sources is lost in the 
decomposition process. The obvious drawback of all HOS-based decomposition 
techniques is also their high computation complexity. The theoretically expected 
behaviour of the cumulants calculated out of the measurements can only be observed if 
the processing signals are at least several 10000 samples long. As a result, HOS-based 
methods are both time and memory demanding.   
 
The methods introduced in the previous chapter share another common drawback. They 
are based on the assumption of more measurements than sources. Although very common 
in BSS, this assumption cannot always be established in practice. Usually, we even don’t 
know the exact number of sources, and even if we did, it is sometimes hard to ensure 
enough measurements. In the case of surface EMG signals, the maximum size of the 
array of electrodes is limited by the size of the investigated muscle. Reducing the inter-
electrode distance the differences among the detected MUAPs diminish and the mixing 
matrix becomes rank-deficient. On the other hand, there can easily be several tens of 
MUs active in the detection volume.   
 
In this chapter, we discuss how the decomposition can be extended to the under-
determined case, i.e. when the number of sources exceeds the number of measurements. 



 52

Realising it is much easier to estimate the binary sources than the mixing matrix in 
general, we first introduce a completely new decomposition concept. Throughout its 
derivation we ignore all the information contained in the mixing matrix and focus strictly 
on the properties of pulse sources. In other words, we try to cancel the interfering effect 
of the mixing matrix. As a result, we only manage to reconstruct the estimates of sources, 
while the mixing matrix is completely lost. We further show this is not a limitation at all, 
because the system responses can always be estimated by averaging the measurements in 
the vicinity of the reconstructed pulses.      
  
The chapter is divided in four sections. In Section 5.1 we first consider the sources 
strictly orthogonal. We also assume more measurements than sources and derive a novel 
decomposition approach, the so called »inverse correlation (IC) based method«. The 
decomposition of non-orthogonal sources is introduced in Section 5.2, while Section 5.3 
evaluates the influence of noise. The last section discusses the impact of the number of 
measurements and extends the novel approach to the case of under-determined MIMO 
systems, i.e. the systems with more sources than measurements.    
 

5.1 Decomposition of orthogonal sources 
 
Suppose the number of sources N smaller than the number of measurements M and 
extend the vector of noisy measurements by their delayed repetitions (Section 3.4.1). 
Further suppose the extended sources orthogonal and denote by sR  their correlation 
matrix: 
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where diag[] stands for the diagonal matrix with its parameters on the diagonal, 
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 is the autocorrelation function of source )(ns j , and )(* ns j  

denotes the complex conjugate value of )(ns j .  
 
Let )()()( nnn ωxy +=  denote the vector of noisy measurements and recall the mixing 
matrix H is a )1( −+× KLNKM  rectangular matrix which corresponds to the over-
determined system of equations.  
 
According to (3.12) there are at least )1( −+− KLNKM   eigenvalues of xR  equal to 
zero. Consequently, the noise variance 2σ̂  can be estimated by averaging the 

)1( −+− KLNKM  smallest eigenvalues of yR . Subtracting 2σ̂  from yR  we obtain the 
estimation of correlation matrix of measurements:  
 

THHRIRR syx ≈−= 2σ̂ .  (5.2) 
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Supposing the mixing matrix H of full column rank: 
 

)1()( −+= KLNrang H ,  (5.3) 
 
and multiplying the vector of the extended measurements with Moore-Penrose pseudo-
inverse of xR , we introduce the so called activity index,  
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where #  denotes the Moore-Penrose matrix pseudoinverse, and ),( nnoω  replaces the 

impact of noise. In (5.4) we also used the equality 1# −= ss RR , which is generally valid 
only for non-singular matrices.   
 
Neglecting the influence of noise, the activity index )(nInd  could be thought of as an 
indicator of a global source activity. It differs from zero only at the time instants n  where 
at least one source is active. Since the sources are orthogonal, there can be at most one 
active source in every time moment.  
 
When a sample index n0 is found in which the j-th source is active, the entire pulse train 
of the j-th source can be reconstructed as: 
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assuming that 1)( 0 =nsj . According to (5.5), the pulse trains of different sources can be 
reconstructed by simply choosing different time moments n0.  
 
Knowing the pulse sources, their system responses can be reconstructed by averaging 
corresponding measurements in the vicinity of their pulses [46]:  
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where kin ,  stands for the time moment corresponding to the k-th reconstructed pulse of 
the i-th source, iF  denotes the number of reconstructed pulses of the i-th source, while 

)(lΨ  is an arbitrary window function. This procedure is commonly referred to as a spike 
triggered sliding window averaging technique [46]. 
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5.2 Decomposition of non-orthogonal sources 
 
Suppose now close-to-orthogonal sources, i.e. sources with small but significant number 
of overlapped pulses. This implies the correlation matrix sR  has dominant diagonal but 
is not strictly diagonal. The fact that there can be several sources active in the same time 
moment has a crucial impact on the activity index.  
 
Suppose there are 

0nQ sources active in the same time moment n0 and denote them by a 

set of indices },...,{
0000 ,1, nQnnn jjG = , where )}(...,2,1{

0
NLKGn +⊆ . Neglecting the 

influence of noise, the value of the activity index in time moment n0  yields: 
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where inv

jir ,  denotes the (i,j)-th element of matrix 1−
sR . According to (5.7), the activity 

index at a given time moment n0  comprises the contributions of all the sources that are 
active in that very moment. The non-diagonal matrix 1−

sR causes the activity index also 
contains all possible combinations )()( 00, nsnsr ji

inv
ji  of active sources.  

 
The same is true for the reconstructed pulse trains of sources. Using (5.5) in the case of 
the overlapping sources, we can generally reconstruct only the superimposition of all the 
sources: 
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where inv

ir  denotes the  i-th row of matrix 1−
sR , while )( 0,0

ns
qnj

 is supposed equal to 1. 

 
Suppose now the matrix sR  diagonal dominant. Then, as proven in Appendix 5A, its 
inverse has a superior diagonal, while all the off-diagonal elements are much smaller than 
the diagonal ones. This implies the superimposition )(

00, nv
nGn  has strong contributions 

only from the sources that are contained in set 
0nG . The contributions form all other 

sources are much smaller in amplitude and can be removed by a simple threshold 
operation. Eq. (5.8) now derives into: 
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According to (5.9), the entire pulse train of the j-th source can still be reconstructed, 
providing we have found any time moment n0 with a contribution (pulse) from only the j-
th source. But such moments are very hard to find. We can partially rely on the activity 
index as its value increases with the number of simultaneously active sources. However, 
the reverse is not generally true. A high value of the activity index can either be the 
consequence of a bigger number of simultaneously active sources or can indicate the 
activity of only one source with a low firing rate. Namely, according to (5.7) the 
contributions from different sources are multiplied by factors inv

jir , , which are, as shown in 
Appendix 5A, proportional to the inverses of the corresponding firing rates. 
Consequently, the activity index must be used with precaution and more formal 
procedure for separation of the source superimpositions is needed.   
 

5.2.1 Separation of the superimposed sources 
 
As explained in Section 3.1, the firing of a pulse source can be modelled by a random 
process. Each sample in the pulse train is considered a random variable with two possible 
outcomes (pulse, no pulse). Its probability density function depends on the outcome of 
the several previous samples and is, hence, very difficult to define. In the sequel we will 
rather operate with conditional probabilities. We will assume there is at least one source 
active in the observed time moment, and define the probability that two or more sources 
are active in the same moment. In other words, we will try to answer the question of how 
probable it is that the k-th pulse of j-th source overlaps with any other pulse from any 
other source.  
 
Suppose now the overlap of two pulses from different sources a random event. Its 
probability is proportional to its relative frequency of occurrence and is, at least in the 
case of close-to-orthogonal pulse sources, relatively low (usually well below 0.1). This 
may be seen more readily by realizing that the relative frequency of overlaps between the 
i-th and j-th source is proportional to the (i,j)-th element of the matrix sR .          
 
The maximum number of simultaneously triggered pulses is usually much smaller from 
the number of all extended sources. In the case of biomedical signals the refractory 
period prevents the delayed repetitions of the same source to overlap. Consequently, the 
number of simultaneously triggered pulses cannot exceed the number of original sources 
N (having N+1 overlapped pulses would necessarily imply that at least two repetitions of 
the same source overlap).  
 
Consider a more general case and assume the sources can be arranged into R subsets, 
each comprising Q sources, whereas the sources from the same subset cannot overlap 
with each other. Define the overlap of two subsets as the overlap of any two sources from 
different subsets and assume all sources within the same subset are equally probable to 
overlap with sources from the other subsets. For the sake of simplicity, also suppose all 
possible overlaps of all possible subsets are independent, equally probable random 
events, and denote their probability by p (Appendix 5B).  
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We are now in position to discuss the separation of superimposed sources. Using (5.8), 
reconstruct the superimposition of the pulse trains of sources active in a given time 
moment n0: 
 

 ∑≈
∈ 0

00
)()( ,,

nGj
j

inv
jjnGn nsrnv  (5.10) 

 
where },...,{

0000 ,1, nQnnn jjG =  denotes the set of all sources that fired in n0.  Without loss 

of generality we can assume the set 
0nG  is not empty. Randomly select the pulse in 

)(
00, nv

nGn  and denote the moment of its occurrence with n1. Further, denote by 

},...,{
1111 ,1, nQnnn jjG =  the set of sources that were active in moment n1.  Because the 

moment n1 was chosen from the superimposition )(
00, nv

nGn , there is at least one source 

that is active in both moments n0 and n1. This implies the intersection 
10 nn GG ∩  contains 

at least one source: 
 

{}
10
≠∩ nn GG  (5.11) 

 
where {} denotes the empty set. The conditional probability that 

10 nn GG ∩  comprises 

01g  sources, if there is at least one source in each set 
0nG and 

1nG , can be estimated as 
(Appendix 5B): 
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where 01)(

10
gGGcard nn =∩  denotes the cardinal number of intersection 

10 nn GG ∩ .  
 
According to (5.12), the probability ( )0)(,0)()(

1010 01 >>=∩ nnnn GcardGcardgGGcardP  

decreases rapidly with the number of expected common sources 01g  and also with the 
number of sources in each subset Q. Consequently, the sets 

0nG and 
1nG will most 

probably differ from each other (Appendix 5B). The same conclusion may apply for 
superimpositions 
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and 
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∑≈
∈ 1

11
)()( ,,

nGi
i

inv
iinGn nsrnv . (5.14) 

 
The superimpositions )(

00, nv
nGn  and )(

11, nv
nGn  overlap in all the pulses that belong to the 

sources contained in 
10 nn GG ∩ . They will also share those pulses which are overlapped 

for the sources from 
10 nn GG −  by the pulses of sources from 

01 nn GG − , where 21 MM −  

stands for  the set difference ( 1M  without 2M ). Suppose the superimpositions )(
00, nv

nGn  

and )(
11, nv

nGn  share a pulse at time moment n2. There are two possible complementary 

explanations: 
 

Assumption 5.1: At least one source from 
10 nn GG ∩ fired at n2: 

 
1)(; 210

=∩∈∃ ns     :GGi  i inn . (5.15) 
 
Assumption 5.2: There is no source in 

10 nn GG ∩ with a pulse at n2. However, at least 

two different sources fired at n2; the first is contained in 
10 nn GG − , the second in 

01 nn GG − :  
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=−∈∃
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ns  GGk k 

     ns  :GGj j             ns  :GGi i

knn
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 (5.16) 

 
Let the superimpositions )(

00, nv
nGn  and )(

11, nv
nGn  share another pulse at time moment n3 

and assume that the moment n2 fulfils the Assumption 5.1, while at n3 Assumption 5.2 is 
fulfilled. Then, according to Assumption 5.1, the intersection 

210 nnn GGG ∩∩ contains at 
least one source, such that: 
 

{}1)(;
21010 2 ≠∩∩⇒=∩∈∃ nnninn GGG          ns  :GGi i , (5.17) 

 
while Assumption 5.2 guarantees 
 

         {}0)(;
31010 3 =∩∩⇒=∩∈∀ nnninn GGG          ns  :GGi i , 

 {}1)(;
3010 3 ≠∩⇒=−∈∃ nnjnn GG          ns  :GGj j , 

{}.1)(:;
3121 3 ≠∩⇒=−∈∃ nnknn GG          ns  GGk k  

(5.18) 

 
Using the conclusions from Appendix 5B we quickly realize the probability of having 
more than one source in any intersection jiGG

ji nn ≠∩ ; , becomes negligible as soon as 

Q (the number of sources in each subset) exceeds the number of subsets R. In similar 
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fashion, the intersections 
320 nnn GGG ∩∩  and 

321 nnn GGG ∩∩  are (with high 
portability) empty sets and the number of pulses in the product 

)()()()(
33221100 ,,,, nvnvnvnv

nGnnGnnGnnGn ⋅⋅⋅  can be estimated as (Appendix 5C, Case 1): 

 

Q
RFppI Q

2)( ≈  (5.19) 

 
where, for the sake of simplicity, we assumed the total number of pulses for all the 
sources equals F (Appendix 5C). 
 
Assume now both time moments n2 and n3 fulfil Assumption 5.1 and let there be at least 
one source active in all four time moments: n0, n1, n2 and n3. Then the intersection 

3210 nnnn GGGG ∩∩∩ comprises at least one source, while conclusions in Appendix 5B 

guarantee the probability of having more than one source in 
3210 nnnn GGGG ∩∩∩ is 

negligible. Analogously to the case above, we can estimate the number of pulses in the 
product )()()()(

33221100 ,,,, nvnvnvnv
nGnnGnnGnnGn ⋅⋅⋅  as (Appendix 5C, Case 2): 

  

)31()(
Q
pFpI Q +≈ . (5.20) 

 
According to (5.19) and (5.20), the superimposed sources can be separated by simply 
comparing the pulses in )()()(

221100 ,,, nvnvnv
nGnnGnnGn ⋅⋅  and )()()(

331100 ,,, nvnvnv
nGnnGnnGn ⋅⋅ . 

Using (5.8), we first reconstruct the superimpositions )(, nv
ii nGn  in all time moments ni 

which correspond to the pulses in the product )()(
1100 ,, nvnv

nGnnGn ⋅ . For all possible pairs 

),( ji , where ji ≠ , we check the number of pulses in the product  
 

)()()()( ,,,,
1100

nvnvnvnv
j

jii nGnnGnnGnnGn ⋅⋅⋅  (5.21) 
 
and combine all the moments ni and nj for which the number of pulses in the product 
(5.21) exceeds a predefined threshold F/2 in a common set iA . In a rather unlikely case 
when the time moments ni and nj share more than one common source, we get several sets 

iA .  Recall the probability of having more than one source active in several different time 
moments converges to zero with the number of different time moments (Appendix 5B). 
Hence, the set iA  will contain the time moments corresponding to the pulses of one 
single, say the i-th source. By averaging the vector of extended measurements over all 
time moments comprising the set iA  we get: 
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where )( iAcard  stands for the cardinal number of set iA . Vector )( iAx  will have a 
strong contribution from the i-th source, while the contributions of all other sources will 
tend to zero, as the number of elements in iA  will rise over all limits:  
 

iiAcard
A

i

Hex =
∞→

)(lim
)(

  (5.23) 
 
where ie  stands for the i-th unit norm vector with a single nonzero element at the i-th 
position. Using the vector )( iAx  in (5.8) we reconstruct the i-th source 
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 (5.24) 

 

5.3 Noise influence 
 
Using the matrix calculus, the noise influence ),( 0 nnoω  in (5.5) can be expressed as: 
     

)()()()()()()(),( #1
0

#
0

1#
00 nnnnnnnno TTTT ωHRsωRωsRHω sxsω

−− ++= .  (5.25) 
    
Assume now the procedure for separation of superimposed sources, which was derived in 
the previous section, succeeded to find a set of time moments ,...},{ 21 nnAi =  
corresponding to the pulses of the i-th source. Let’s average the extended vector of noisy 
measurements over all time moments in iA : 
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and recall the noise is modelled as a white, zero-mean Gaussian random process. Using 
the Cramer-Rao lower limit [92], it is easy to show the variance of the average in the 
presence of the white Gaussian noise is limited by 
 

)(

2
2

)(
i

A Acardi

σ
σ =y  (5.27) 

 
where 2σ  stands for the noise variance. It is trivial to see  
 

0lim 2
)()(
=

∞→ i
i

AAcard yσ .  (5.28) 
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According to (5.28), the influence of the noise vector Tn )( 0ω in (5.25) will tend to zero 
when the vector )( iAy  will be calculated over a large enough set of time moments iA . 
Consequently, (5.5) suggests 
 

),()()()()( ,
#

, nAonsrnAnv ii
inv
ii

T
iiAi ωxyRy +≈=   (5.29) 

 
and the noise influence  ),( nAo iω  reads:  
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While the first two factors in (5.30) converge to zero, the averaging in vector )( iAy  

hardly changes the last term )()( #1 nA T
i ωHRs s

− . Its impact can be reduced by averaging 
the reconstructions of different repetitions of the same source. There is yet another, very 
efficient way towards a better signal-to-noise quality of the results. We present it in the 
next subsection.  
 

5.3.1 Noise in the space of sources 
 
The noise influence can also be observed in the space of sources. For the sake of 
simplicity, suppose the square mixing matrix H of full rank and define 
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 (5.31) 

 
Taking into account the standard norm inequality )()( nn sHx ≤ , the influence of 
noise in the space of sources can be estimated as [68, 115]:  
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where 1−= HHκ  stands for the condition number of matrix H. On the other hand, the 

inequality )()( 1 nn xHs −≤  implies 
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hence 
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According to (5.34), the influence of noise depends strongly on the condition number 

1−= HHκ .  If H is well-conditioned a small noise in the space of measurements can 

not produce large errors in the source space, but if  H is ill-conditioned even a small noise 
can result in large corruption of the sources’ space.  
 
As there are many different norms there are also many different matrix condition 
numbers. We will focus only on the condition number derived from the second norm. It is 
defined as the ratio between the largest and the smallest singular value of matrix H. The 
singular values of matrix H indicate how much distortion can occur under the 
transformation by H. The largest singular value of matrix H reveals the upper limit to 
which the unit vector can be amplified by matrix H, while the smallest singular value 
defines its lower limit. The actual degree of distortion depends also on the orientation of 
the vector entering the transformation with respect to the right singular vectors of matrix 
H. Suppose the noise vector )(nω  aligned with the right singular vector which 
corresponds to the largest singular value, and the source vector )(ns aligned with the right 
singular vector which corresponds to the smallest singular value. Then the relative impact 
of noise will be amplified by factor .κ  
 
Denote by D the diagonal matrix of singular values of matrix H, and by U and V the 
matrices comprising the left and right singular vectors of matrix H, respectively 
 

  TUDVH = .  (5.35) 
 
U and V are by definition unitary: 
 

  IUUUU == TT ,  (5.36) 
 

  IVVVV == TT .  (5.37) 
 
For the sake of simplicity, suppose the correlation matrix of source sR  equal to the 

identity matrix and express the correlation matrix of measurements xR  as: 
 

TTTTT UUDVDUUDVHHHHRR sx
2==== .  (5.38) 

 
Because the matrix xR  is symmetric and positive semidefinite we can always uniquely 
factorize it to 
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T
LLΛUURx =   (5.39) 

 
where LU denotes the unitary matrix of eigenvectors, and Λ  the diagonal matrix with the 
eigenvalues of matrix xR . The uniqueness of the eigendecomposition [115] guarantees 
the following relations: 
 

UU =L  (5.40) 
 
and 
 

2DΛ = . (5.41) 
 
According to (5.41), altering the eigenvalues of the matrix xR  changes the singular 
values of the mixing matrix H. Suppose now the eigenvalues in Λ  sorted in a descending 
order (from the largest to the smallest eigenvalue) and set the k smallest eigenvalues to 
zero: 
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J  and  kKMkKM −− ,I  stands for the identity matrix of 

size )()( kKMkKM −×− , while kkKM ,−0  is a matrix with all elements equal to zero. 

Construct the new correlation matrix xR̂ : 
 

T
LL UΛURx
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and rewrite  (5.4) to 
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T

k VVJT = is orthogonal projection matrix, which converges to identity matrix as k 
converges to zero [68, 115]:  
 

IVVJ =
→

T
kk

  
0

lim .  (5.45) 
 
Its influence will be assessed in the next section where the decomposition of more 
measurements than sources will be studied. For now it suffice to say that cutting the 
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eigenvalues of the matrix xR  introduces the effect similar to nonorthogonal sources, but 
significantly improves the condition number of the mixing matrix H. The optimal degree 
of cutting (the value of parameter k) depends on the original condition number of the 
mixing matrix H and on the signal-to-noise ratio: the stronger the noise, the higher the 
optimal degree of cutting.  
 

5.4 Decomposition of under-determined systems 
 
In section 5.1, where the IC method was derived, we assumed the number of sources 
exceeds the number of measurements. But the number of sources is usually hard to 
estimate. Supposing the number of sources unknown we cannot correctly estimate the 
extension factor K and we risk the underdetermined system. On the other hand, the 
number of sources can always exceed the number of measurements.      
 
Suppose the number of sources N greater than the number of measurements M (M<N), or 
equally, the extension factor K too small to satisfy the relation )1( −+> KLNKM . The 

)1( −+× KLNKM  mixing matrix H is now rectangular and has more columns than 
rows. Without loss of generality, we can suppose the mixing matrix H of full row rank: 
 

KMrang =)(H .  (5.46) 
 
Its decomposition to singular values yields: 
  

TUDVH =  (5.47) 
 
where U and V denote unitary matrices of size KMKM ×  and 

)1()1( −+×−+ KLNKLN , respectively. D is diagonal matrix with the singular values 
of matrix H on its diagonal.  
 
Supposing the sources are orthogonal and matrix sR  equals the identity matrix, (5.4) and 
(5.5) transform into 
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and 
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where T
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is orthogonal projection matrix which projects the extended source vectors into the space 
of measurements. Its properties are described in Appendix 5D.  
 
What can now be said about the activity index? Because the matrix T is positive 
semidefinite (Appendix 5D), the activity index is still non-negative in every possible time 
moment. But the interpretation of its value turns out to be tricky. In previous sections, we 
saw that having more measurements than sources the value of the activity index increases 
with the number of simultaneously active sources. This may not necessarily be true any 
more in the case of under-determined MIMO system. Let there be two sources si and sj 
active in the time moment n0. The value of the activity index in the time moment n0 
yields:  
 

ijjijjjjiiii tnsnstnsnstnsnsnInd )()(2)()()()()( 0000000 ++=  (5.50) 
 
where ijt denotes the (i,j)-th element of the matrix T. Having three sources – si, sj and sk – 
active in time moment n1, the value of the activity index yields:  
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Supposing now the pulses of all the sources equal to 1 and kkjjii ttt >> , we can always 
assume  kkik tt −<2/  and 0<jkt . Comparing (5.50) and (5.51), 
 

ijjjiijkijjjiijkikijkkjjii ttttttttttttt 222222 ++<−++<+++++ , (5.52) 
 
we see how the value of the activity index can decrease, although the number of active 
sources increases. Although perfectly possible, this is not a very likely case, because 
many different conditions have to be met. The index activity can, therefore, still be used 
as an indicator of global activity of sources.  
 
The experimental results and the theory in Appendix 5D show the matrix T will have at 
least a part of its diagonal elements superior to all off-diagonal elements, as long as 
KM<N(L+K-1)<2KM. The sources corresponding to the dominant diagonal elements of 
the matrix T still obey the theory from the over-determined case: 
 

∑≈∑ ∑==
∈∈

+

= 00
0

)()()()()()(
)(

1
00,

nn
n Gi

iii
Gi

KLN

j
jiij

T
iG nstnsnstnnnv sTs . (5.53) 

 
The procedures derived in Subsections 5.2 and 5.3 can, hence, readily be applied also in 
the case of under-determined MIMO systems. The only difference between the over-
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determined and the under-determined case turns up to be the degree to which the mixing 
matrix H is cancelled. While H is completely lost in the over-determined case, it is still 
partially present (in the form of matrix T) in the under-determined case. When H is close 
to the square matrix, T is close to the identity matrix. Rising the ratio between the 
number of sources and the number of measurements, T is gradually loosing its diagonal 
form and the impact of the mixing matrix increases (Appendix 5D). Nevertheless, 
keeping the ratio KM : )1( −+ KLN  below 2, at least a part of all sources will be 
completely reconstructed. This conclusion will be further confirmed by comprehensive 
set of experiments which are described in the next chapter.   
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Appendix 5A: Inverse of diagonally dominant matrix 
 
Suppose the source correlation matrix sR  of size NN ×  diagonally dominant, i.e. the 
matrix in which the magnitude of each diagonal entry exceeds the sum of the magnitudes 
of the off-diagonal entries in the corresponding row: 
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where jir ,  denotes the (i,j)-th element of matrix sR . Supposing the sources close-to-
orthogonal we also have 
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where ε  is usually much smaller than 0.1. 
 
The matrix sR  can always be written as a sum of the diagonal and non-diagonal 
matrices: 
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denotes the diagonal, and  
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non-diagonal part of the matrix sR . Using the Neumann series, the inverse of sR  can be 
expressed as [115]: 
 



 67

,)[(

)())(()(

1

1

11

1111111

−∞

=

−−

−−−−−−−

∑ ]−+

=+=+=+=

ssss

sssssssss

DNDD

DNDINDIDNDR

k

k  (5A.6) 

 
providing the absolute value of each eigenvalue of the matrix  
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is smaller than 1. According to the Gerschgorin’s theorem, the eigenvalues of ss ND 1−  are 
contained in the union of the Gerschgorin circles defined by [115]: 
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where kλ  stands for k-th eigenvalue of the matrix ss ND 1−  and the relationship from 
(5A.1) was used. Using (5A.8), it is easy to show 
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Thus, the first-order approximation of 1−

sR  yields: 
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Using inequality (5A.2), we obtain 
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and 
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which, when the inequality 1<<ε  is taken into account, proves the inverse of diagonally 
dominant matrix sR  has a superior diagonal. 
 
According to comprehensive numerical simulations, similar conclusions apply also to the 
matrices which are not strictly diagonally dominant (in the sense of (5A.1)) but still fulfil 
the condition in (5A.2). Moreover, in each simulated matrix the ratio between the 
diagonal and off-diagonal elements was yet improved by the matrix inverse, pushing the 
superiority of the diagonal elements even higher. The exact proof of the observed 
phenomenon reaches beyond the scope of this dissertation.   
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Appendix 5B: Probability of overlapped pulses 
 
Let the pulse sources be organized into R subsets, each comprising Q sources, and 
assume the sources from the same subset cannot overlap with each other. Define the 
overlap of the i-th source with the m-th subset of sources as a set of all possible overlaps 
of the i-th source with any source from the m-th subset. Further assume that overlaps of 
all possible sources with all possible subsets are independent, equally probable random 
events and denote their probability by p.  
 
For the sake of simplicity, also assume that any source from a given subset is equally 
probable to overlap with any source from any other subset: 
 

p
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1:; , =≠∀∀  (5B.1) 

 
where kjp ,  denotes the probability that a single pulse of the j-th source overlapped with 
any pulse of the k-th source, whereas we assume the j-th and k-th source do not belong to 
the same subset.   
 
Let n0 be the time moment in which at least one source was active and denote the active 
source by index j. The probability of having g0  ( Rg ≤0 ) sources active in given time 
moment n0 equals the probability that the j-th source overlap with g0-1 out of R-1 possible 
subsets of sources: 
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where the set 

0nG  comprises the sources that were active in time moment n0, )(
0nGcard  is 

its cardinal number, while ⎟⎟
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 denotes the number of combinations of m elements taken  

r elements at a time.  
 
The number of all possible combinations of g0 (out of RQ) simultaneously active sources 
is 
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and the probability of having g0 selected sources active in given time moment n0 yields: 
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Finally, excluding g1 selected sources from the set of all possible sources, the number of 
all possible combinations of g0 overlapped sources reads: 
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Observe now two time moments, n0 and n1, with the pulses from at least one (not 
necessarily the same) source. Denote by g0 the number of sources that were active in 
moment n0, and by g1 the number of sources that were active in moment n1. Using the 
denotations 
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the probability of having g01 common sources active in both time moments can be 
obtained as:  
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where the fact that at least g01 sources had to fire in both time moments n0 and n1: 010 gg ≥  
and 011 gg ≥  is taken into consideration. Using (5B.5), we obtain: 
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Owing to 
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(5B.8) yileds: 
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Because 2

10 Rgg ≤ , the probability )( 0110
gp

nn GG ∩  can be estimated as follows: 
 

.)1(

)1(
)!(!

)!1()(

11

011

010

00

0110

1

011

01

1

010

01

0101

2

01

gRgR

gg

R

gg

gRg
gGG

pp
gg
gR

pp
gg
gR

QgRRg
RRgp

nn

−−

=

=

−−
∩

−∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

∑ ⋅−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−
−

≤

 (5B.11) 

Finally, using 
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we get 
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The estimation (5B.13) represents the upper bound which is never attained and is 
accurate only for large Q. Nevertheless we can see that the probability of having g01 
common sources in two time moments drops rapidly with the number of common 
sources, g01, and also with the cardinal number of subsets, Q (Figs. 5B.1, 5B.2 and 5B.3).   
 
In the case of EMG signals, the number of subsets corresponds to the number of active 
MUs, while Q represents the number of the delayed repetitions of each innervation pulse 
train. Taking into account that Q is usually greater than 20, while the probability p hardly 
exceeds 0.5, we can conclude the probability of having two common sources active in 
two different time moments is negligibly small. This fact can readily be seen also from 
Fig. 5B.2.   
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Figure 5B.1: The upper bound (5B.13) of probability )( 0110

gp
nn GG ∩  at g01=1 and R=10 in 

dependence of the number of sources in each subset, Q, and the probability of overlapped 
subsets, p.  
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Figure 5B.2: The upper bound (5B.13) of probability )( 0110

gp
nn GG ∩  at g01=2 and R=10 in 

dependence of the number of sources in each subset, Q, and the probability of overlapped 
subsets, p.  
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Figure 5B.3: The upper bound (5B.13) of probability )( 0110

gp
nn GG ∩  at g01=3 and R=10 in 

dependence of the number of sources in each subset, Q, and the probability of overlapped 
subsets, p.  
 
The probability of having g01 common sources active in three or more time moments are 
much smaller than )( 0110

gp
nn GG ∩  and can thus be neglected – at least when Q  (p) is big 

(small) enough.   
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Appendix 5C: Average number of pulses in the product of the 
superimposed pulse trains of sources  

 
In this appendix we use the assumptions and conclusions from Appendix 5B to estimate 
the average number of pulses in a product of the superimposed pulse trains of close-to-
orthogonal sources.   
 
Suppose four time moments, n0, n1, n2 and n3, with at least one (not necessarily the same) 
active source and use (5.5) to reconstruct the corresponding superimpositions of sources’ 
pulse trains:  
 

 ∑≈
∈ in

ii Gj
j

inv
jjnGn nsrnv )()( ,, , i=0,1,2,3. (5C.1) 

 
Denote by },...,{ ,1, ignnn iii

jjG =  the set of sources that were active in time moment ni, 

i=0,1,2,3. According to Appendix 5B, the probability that the set 
inG differ from other 

sets is high.  
 
For the sake of simplicity, assume the number of pulses in each source equals F and 
observe the average number of pulses in the element-wise product )()( ,, nvnv

j
jii nGnnGn ⋅ , 

ji ≠ . The product )()( ,, nvnv
j

jii nGnnGn ⋅  will certainly contain the pulses of all the sources 

from the intersection 
ji nn GG ∩ . Considering their mutual overlapping, the average 

number of pulses that the sources from 
ji nn GG ∩ contribute to the product 

)()( ,, nvnv
j

jii nGnnGn ⋅  can be estimated as: 
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where, following the convention from Appendix 5B, ijg  is the cardinal number of 

ji nn GG ∩ ,  
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denotes the correction factor introduced by the fact that the pulses of the sources in 

ji nn GG ∩  overlap, and
Q
ppQ =   stands for the probability that the pulses of two arbitrary 

sources overlap (Appendix 5B). 
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The product )()( ,, nvnv
j

jii nGnnGn ⋅  will also contain all those pulses of any source from 

ji nn GG −  which randomly overlap with the pulses of any source from 
ij nn GG − , where 

21 MM −  denotes the set difference ( 1M  without 2M ).  Their number can be estimated 
as: 
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where ig  denotes the cardinal number of 
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is a generalised correction factor (5C.3) which accumulates the influence of all possible 
overlaps among the sources from subsets 

ji nn GG −  and 
ij nn GG − , respectively, and 

excludes the influences of sources form 
ji nn GG ∩ . Taking into account the fact that not 

all sources can overlap (Appendix 5B), the total average number of pulses in the product  
)()( ,, nvnv

j
jii nGnnGn ⋅  yields: 
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We can follow the same route to estimate the average number of pulses in the product  
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nGnnGnnGnnGn ⋅⋅⋅ . For the clarity reasons, define first the following 

mutually disjunctive sets: 
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where }3,2,1,0{,, ∈kji  and  ji ≠ , ki ≠ , kj ≠ . By definition, the unions of all the M sets 
equal the union of all the G sets: 
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and all possible intersections of the M sets are empty. Following the convention from 
Appendix 5B, denote by )(Mcardm=  the cardinal number of the set M  and estimate the 
average number of pulses in the product )()()()(

33221100 ,,,, nvnvnvnv
nGnnGnnGnnGn ⋅⋅⋅  as: 
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(5C.9) 

 

Supposing the probability 
Q
ppQ =  small (Appendix 5B) and neglecting all the factors 

which are multiplied by the second or the higher power of Qp , (5C.9) yields: 
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According to (5C.10), the average number of pulses in the product 

)()()()(
33221100 ,,,, nvnvnvnv

nGnnGnnGnnGn ⋅⋅⋅  depends mainly on the number of sources in the 
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sets 
0nG , 

1nG , 
2nG  and 

3nG  and their division in the corresponding M sets. In the sequel 
we are going to study just two of many possible cases.  
 
Case 1: Suppose the set 2,1,0M  contains a single source, while sets 3,1,0M , 3,2,0M , 3,2,1M  
and 3,2,1,0M  are empty: 1012 =m  and .00123123023013 ==== mmmm  Further assume 01m , 02m , 

03m , 12m , 13m  and 23m  are all equal to or less than 1. Then (5C.10) yields: 
 

)]0,1()1,1(3),()0,1([)( 333 ffmgmffpFpI QQ +−≈ . (5C.11) 
 
Recall that 012312302301323130333 mmmmmmmgm −−−−−−−=  and that on average the 
number of sources in the set 

3nG  can be estimated as Rpg =3 . Calculate the values of all 
functions ),( ⋅⋅f  and neglect the factors which are multiplied by the second or higher 
power of Qp  to get the final estimate 
 

Q
RFpFQRpI 2),,,( ≈ . (5C.12) 

 
 
Case 2: Suppose the set 3,2,1,0M  contains a single source, while sets 2,1,0M , 3,1,0M , 3,2,0M  
and  3,2,1M  are empty. Further assume (in like fashion to Case 1) that 01m , 02m , 03m , 12m , 

13m  and 23m  are equal to or less than 1. Then (5C.10) simplifies to  
 

)]0,1()1,1(3)0,1(1[)( ffpfFpI QQ +⋅≈ . (5C.13) 
 
Neglecting all the factors which are multiplied by the second or higher power of Qp  we 
get the final estimate 
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Appendix 5D: Properties of orthogonal projection matrix 
 
Define the matrix T as  
 

HHHHT #)( TT=  (5D.1) 
 
where #  denotes the Moore-Penrose matrix pseudoinverse [68, 115], and H is arbitrary 
mixing matrix of size )1( −+× KLNKM , with KM<N(L+K-1). Without loss of 
generality, we can suppose the mixing matrix H of full row rank. Using the singular 
value decomposition: 
 

TUDVH =  (5D.2)
 
the matrix T can be expressed as: 
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where V is )1()1( −+×−+ KLNKLN unitary matrix, and D is )1( −+× KLNKM  
diagonal matrix with the singular values of matrix H on its diagonal.  
 
It is easy to show that:  
 

2TTT == T , (5D.4) 
 
which proves Property 1. 
 
Property 1: The matrix T is orthogonal projector mapping the )1( −+ KLN - 
dimensional space of sources onto KM-dimensional space of measurements.  
 
Taking into consideration the common properties of the orthogonal projection matrices 
we have [68, 115]: 
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where tii stands for the i-th diagonal element of matrix T, vij denotes the (i,j)-th element 
of the unitary matrix V, while (.)trace  is the matrix trace (the sum of all diagonal 
elements).  
 
As an orthogonal projector the matrix T has many useful properties. In the sequel only 
those which are crucial for the IC method will be outlined. 
  
Property 2: T is by definition positive semidefinite [115]:  
 

0:; )( ≥ℜ∈∀ + sTsss TKLN        (5D.7) 
 
and 
 

0)det( ≥sT  (5D.8) 
 
where Ts denotes any principle submatrix of matrix T, i.e. the matrix obtained from T by 
deleting the same set of columns and rows. Applying (5D.8) to the arbitrary principal 
submatrix Ts of size 22×  we obtain: 
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Moreover, using (5D.7) and setting T]0,...,0,1,0,...,0,1,0,...,0[ −=s  (the vector whose i-th 
element equals 1, j-th element equals -1, while all the other elements equal zero) we get 
 

02 ≥−+= ijjjii
T tttsTs . (5D.10) 

 
Changing the sign of the j-th element in vector s  i.e. T]0,...,0,1,0,...,0,1,0,...,0[=s (5D.7) 
yields: 
 

02 ≥++= ijjjii
T tttsTs . (5D.11) 

 
By merging the inequalities (5D.6), (5D.9), (5D.10) and (5D.11) we get 
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Finally, from (5D.12) and (5D.13) it follows:   
 
Property 3: The absolute value of the off-diagonal element tij is limited to the interval  
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
∈

2
,,min,0 jjii

jjiiij
tt

ttt . (5D.14) 

 
Property 4: According to (5D.5) and (5D.6) there are at least KM diagonal elements tii 
different from zero.  
 
Assume now the matrix T has j-th diagonal element equal to 0. According to (5D.4) we 
have 
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and 
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Finally, we have  
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which proves Property 5. 
 
Property 5: The orthogonal projection matrix with the j-th diagonal element equal to 0 
must have all the elements of the j-th row and  j-th column all 0.  
 
 
The last property we are going to outline is based on a less formal proof. From (5D.1) it 
follows:   
 

)1()1()1(
lim −+×−+

−+→
= KLNKLNKLNKM

IT  (5D.18) 
 
Observe now the i-th column of the matrix V. Denote it by iv  and consider three different 
cases:  
 

1. The majority of the energy of iv  is concentrated in the first KM elements. This is 
the ideal case as orthogonality of the matrix V guarantees the diagonal element tii 
will be close to 1, while all off-diagonal elements tij and tji will be close to 0.   
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2. The energy of iv  is uniformly distributed among all elements. This is most 
probable case and implies the value of the diagonal element tii will slowely 

decrease when the ratio  
KM

KLN )1( −+  increases, while the off-diagonal elements  

tij and tji will slowly increase.  
 

3. The majority of the energy of iv  is concentrated in the last  
)1( −+− KLNKM elements. This is the worst case as (5D.6) guarantees the 

diagonal element  tii will be close to zero, whereas according to Properties 3 and 4 
the off-diagonal elements tij and tji will be much smaller than at least several 
diagonal elements. 

 
The last conclusions can be further justified by noticing that the orthogonality of the 
matrix V guarantees the number of the columns iv  concomitant with the case 3 is 
limited. Namely, being orthogonal, the matrix V preserves the norms and the angles 
between arbitrary vectors. Supposing that all its columns correspond to case 3, it would 
necessarily imply the matrix V is similar to the projection matrix which maps 

)1( −+ KLN -dimensional space onto KMKLN −−+ )1( -dimensional subspace. This 
directly contradicts the preservation of angles between the arbitrary vectors [68, 115].  
 

Property 6:  Supposing the ratio 
KM

KLN )1( −+  small enough, the matrix T will have at 

least a part of its diagonal elements superior to all off-diagonal elements. The numerical 
simulations reveal the dominant diagonal elements are at least several times higher than 
the corresponding off-diagonal elements, as long as the number of sources, )1( −+ KLN , 
does not exceed the number of measurements, KM , by factor 2.  
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6.  

Surface EMG decomposition results 

In previous chapters we derived three novel decomposition approaches. We explained the 
theory behind the influences of noise and of non-orthogonal sources, and in the last 
chapter, we evaluated the impact of the ratio between the number of sources and number 
of measurements. We further estimated the probability of overlapped sources and stated 
very general conclusions regarding the efficiency of the introduced methods.  
 
Supposing general pulse sources, the derived methods depend neither on the type of the 
pulse sources nor on the nature of the mixing process. They can, hence, be used for 
separation of both the convolutive and multiplicative mixtures. The only assumption in 
which they follow the example of biomedical signals concerns the minimal length of the 
inter-pulse interval which must be longer than the corresponding system responses. This 
assumption was further moderated in the case of the IC method where we supposed the 
sources are divided into R subsets, each comprising Q sources. In this way the 
decomposition can easily be extended to include more general cases. In the case of 
biomedical signals we take R=N and 1−+= KLQ  [77], while, on the other hand, when 
allowing the repetitions of the same source to overlap, we take )1( −+= KLNR  and 
Q=1. Following the common convention from the theory of BSS the mixing matrix was 
further supposed constant in time.  
 
In this chapter, the performance of the developed decomposition approaches will be 
tested on the synthetic and real SEMG signals. As already explained in the Chapter 3, the 
MU can be treated as a pulse sources. The refractory period and maximal possible firing 
frequency guarantee the delayed repetitions of the same innervation pulse train cannot 
overlap, while the innervation trains of different MUs do not overlap significantly (at 
least at low muscle contraction levels). On the other hand, the assumption of the 
stationary mixing matrix imposes some crucial restrictions on the surface EMG 
measurements. The latter must be taken in steady, controlled conditions during isometric 
muscle contractions and without any observable effect of the fatigue.  
 
While the decomposition of the EMG signals to the MU firing patterns has proved to be a 
very important clinical issue, there is yet another, more technical reason for testing the 
developed decomposition approaches on the surface EMG. Namely, the physiological 
properties of MUs put some severe limitations on both the innervation pulse trains and on 
the shape of MUAPs. Evaluating the results on the real signals these limitations can be 
readily used in the verification and validation procedure. This issue is crucial, as the 
original innervation trains are usually unknown.  
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The chapter is divided into two large sections. Section 6.1 evaluates the decomposition 
on the synthetic surface EMG signals, while Section 6.2 studies the decomposition on the 
real surface EMG signals. Both sections are further divided into three subsections, each 
providing the results of different decomposition approach. The results will be discussed 
and mutually compared in the next chapter.    
 
 
6.1 Results on synthetic surface EMG signals 
 
Decomposing the real surface EMG signals the original innervation pulse trains and even 
the number of active MUs are unknown. We can partially rely on the indirect measures 
which will be described more in detail in the next section. Nevertheless, the different 
decomposition procedures should first be evaluated on the synthetic signals. This way the 
impact of the number of active MUs, their firing frequency, depth in the muscle tissue, 
etc., as well as the influence of noise can be readily evaluated. Moreover, the experience 
gained on the synthetic signals can prove crucial when evaluating the performance on the 
real signals. However, to be able to reason from the thier results, the synthetic signals 
must resemble the real ones as much as possible.  
 
To ensure their representativeness, all the synthetic EMG signals were generated using 
the advanced surface EMG simulator built by the world recognised experts from the 
bioengineering laboratory LISiN (Laboratorio di Ingegneria del Sistema 
Neuromuscolare) at Politecnico di Torino, Italy. The simulator allows simulation of 
multi-channel spatially filtered surface EMG signals generated during voluntary 
contractions by the activity of a large number of motor units [56]. All the main features 
of the surface EMG signal are modelled, including the fatigue, the generation and 
extinction phenomena of the action potentials at the end-plate and tendon regions, the 
size and shape of the recording electrodes, and the inclination of the fibres with respect to 
the detection system. The volume conductor is described as an anisotropic layered 
medium with muscle, fat and skin layers. Motor units are placed randomly in the 
detection volume and are active at selectable firing rates. The detection systems are 
placed either along with, or transversal to, the fibre direction. 
 
The influence of two factors was evaluated during our simulation: a) the number of active 
MUs, and b) the signal-to-noise ratio (SNR). The number of active MUs was set to 5, 10 
and 20, respectively, while SNR ranged from 0 dB to 20 dB, in steps of 5 dB. The other 
important SEMG parameters were set as follows: 
 

• Skin was simulated as 1 mm thick isotropic layer and subcutaneous fatty tissue as 
3 mm thick isotropic layer. 

• Active MUs consisted of a random number of fibres (uniformly distributed 
between 50 and 300) with the circular MU territories of 20 fibres/mm2. The depth 
of active MUs in the anisotropic muscle layer varied uniformly from 3 mm to 10 
mm, while additional random shift (uniformly distributed between -10 and 10 
mm) from the centre of the electrode array in the direction transversal to the 
muscle fibres was applied to each MU. 
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• MU firing rate was normally distributed around the mean of 15 Hz with standard 
deviation of 4 Hz. The IPI variability was modelled zero-mean Gaussian variable 
with the variance equal to 20 % of the IPI mean.    

• Conduction velocity was assumed normally distributed with the mean of 4 m/s 
and standard deviation of 1 m/s.  

• The innervation zones were assumed placed in the middle between the tendons, 
and the semi-fibre length was set to 70 mm. The spread of innervation zones was 
limited to 5 mm. 

• The average length of simulated MUAPs was estimated to 25 ms.  
• 11×5 array detection system with 11 rows and 5 electrodes per row was centred 

over the distal half of muscle fibres, columns aligned with the direction of fibres. 
• Rectangular 1 by 1 mm electrodes with the inter-electrode distance of 5 mm were 

simulated.   
• Measurements were supposed longitudinal single-differential. 
• Synthetic SEMG signals in duration of 30 s were sampled at 1024 Hz. 

 
10 simulations were performed for each number of active MUs (5, 10 and 20). In each of 
the simulation runs the depth of the active MUs, their firing rate, number of fibres, shift 
in the direction transversal to the muscle fibres, and conduction velocity were randomly 
selected. In addition, signals from each simulation run were corrupted by additive noise 
(5 realisations of noise for each SNR) resulting in 250 test signals for each number of 
active MUs. 
 

6.1.1 Method based on time-frequency distributions  
 
We first tested the method based on time-frequency distributions. Employing all 50 
single-differential measurements of synthetic surface EMG, and having the average 
length of MUAPs estimated to 25 samples, the vector of measurements was extended by 
factor K=3 in the case of 5 active MUs, and by factor K=7 in the case of 10 active MUs. 
According to (3.12), the number of extended sources was estimated to 135 and 310, 
respectively. In order to ensure the number of measurements exceeds the number of 
sources, the signals with 20 active MUs would have to be extended by the factor K=17. 
As a result, the set of STFD ),( fnzzD  matrices entering the joint-diagonalization would 
comprise at least 820 matrices of size 820820× . Having its computational complexity 
proportional to the cube of the matrix size [74], the joint-diagonalization would require 
enormous amount of processing time to complete. Hence, the method based on time-
frequency distributions was tested only on the signals with 5 and 10 active MUs. This 
decision is further justified by the results, which, as we will see, prove the efficiency of 
the method decreases with the number of active MUs.  
 
The method based on time-frequency distributions assumes the number of sources (active 
MUs) is known. When this is not the case, the number of sources can be estimated from 
the rank of correlation matrix of measurements xR . Note also, the number of sources can 
be slightly overestimated. As a result, the method reconstructs some extra sources, but 
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they all have amplitude close to zero. Nevertheless, testing the method on the synthetic 
signals we supposed the number of sources was known.  
 
The exact decomposition procedure used can be summarized in the following six steps: 
 

1. Using the eigen-decomposition of the correlation matrix of extended 
measurements, reconstruct the whitening matrix B and estimate the noise variance 

2σ . The exact procedure is described in [13, 17].  
 

2. Whiten the extended vector of noisy measurements and, according to (4.15). 
calculate the matrices of pseudo Wigner-Ville distribution ),( fnzzD .  

 
3. Apply the criterion (4.21) to all ),( fnzzD  matrices and join the matrices which 

correspond to the single-autoterms of the same, say the i-th source to the set Ai. If 
the number of sets Ai reaches the estimated number of sources, go to step 4. 
Otherwise use (4.21) and (4.24) to find the matrices which correspond to the 
missing sources and contain as little contributions from other sources as possible.  

 
4. Average the matrices in each set Ai and use (4.28) to remove the influence of 

noise. Denote the resulting matrices by Mi. 
 

5. Joint-diagonalize all matrices Mi to estimate the missing unitary matrix U and use 
(4.16) to reconstruct the innervation pulse trains.  

 
6. Mutually compare the obtained innervation trains and classify all the repetitions 

of the same innervation train into the same group. Align in time all the delayed 
repetitions of the same innervation train and calculate their average. 

 
Evaluating the results, only the reconstructed innervation trains containing at most 30 % 
misplaced pulses were taken into consideration. All other reconstructions were discarded. 
The results are summarized in Table 6.1 and exemplified in Figs. 6.1 and 6.2.  
 
The results in Table 6.1 show the decomposition efficiency decreases with the SNR and 
the number of active MUs. At SNR of 20 dB, the average number of the reconstructed 
MUs yields 3.8 and 7.3 in the case of 5 and 10 MUs, respectively. Decreasing SNR to 0 
dB the average number of MUs drops to 1.6 and 0.7, respectively. The drop of 
performance in the case of 10 active MUs can partially be explained by realizing the 
method based on TF distributions strongly depends on the number of non-overlapped 
pulses. The latter decreases rapidly with the number of active MUs. Using the results of 
Appendix 5B and setting R=5 (5 active MUs), 27=Q  and 25.0=p , the probability of 
non-overlapped pulse yields 0.24. On the other hand, setting R=10 (10 active MUs) and 

31=Q , the probability of non-overlapped pulse drops to 0.06. Increasing the number of 
active MUs by factor 2, the number of matrices corresponding to the single-autoterms 
decreases by factor 4. The number of non-ideal STDF matrices entering the joint 
diagonalization increases, and the performance drops (Subsection 4.1.4).   
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Figure 6.1: Original synthetic innervation pulse trains (black) and pulse trains 
reconstructed by the method based on TF distributions (grey) in the case of 5 active MUs 
(simulation 2, MU 5) and at SNR = 20, 15, 10, 5 and 0 dB.  
 
The performance also drops with noise. We can partially cancel its influence by 
averaging the STFD matrices and applying (4.28). However, the noise also influences the 
selection of STFD matrices, which, as already explained, is crucial for the estimation of 
the mixing matrix. Small probability of overlapped pulse in the case of 5 active MUs 
compensates the drop in performance of criterion (4.21). In the case of 10 active MUs the 
number of overlapped pulses increases and the effect of noise becomes evident.  
 
The TF-based method uses the reconstructed mixing matrix to estimate the pulse sources. 
According to (3.16), the mixing matrix comprises K delayed repetitions of each system 
response. As a result, the MUAPs can be reconstructed by averaging the corresponding 
rows of the estimated mixing matrix. However, according to BSS indeterminacy 3.1, the 
reconstructed sources and corresponding columns of the reconstructed mixing matrix can 
be arbitrarily permuted (with respect to the original sources). Hence, before the 
averaging, the columns of the mixing matrix must be rearranged to match the original 
order. Note the original order of sources (and matrix columns) is already determined in 
step 6 of the decomposition procedure described above. While the reconstructed sources 
can be averaged over 1−+ LK  delayed estimations of each source, there are only K  
delayed reconstructions of each MUAP. In our test, we used K=3 in the case of 5 active 
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MUs and K=7 in the case of 10 active MUs. Averaging over only 7 different values is not 
very efficient and we can readily expect the reconstructed MUAPs will significantly 
differ form the original ones. The results are described in Table 6.2, while the norm of the 
MUAP difference, which is used as a measure of fit, will be defined in the next 
subsection.  
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Figure 6.2: Original synthetic innervation pulse trains (black) and the pulse trains 
reconstructed by the method based on TF distributions (grey) in the case of 10 active 
MUs (simulation 3, MU 8) and at SNR = 20, 15, 10, 5 and 0 dB.  
 
 
The results in Table 6.2 will be further discussed in the next chapter, where they will be 
compared to the results of other two methods. For the time being, it suffices to realize the 
innervation pulse trains were reconstructed much more accurately than the corresponding 
MUAPs.  
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Table 6.1. The number of reconstructed innervation pulse trains (mean ± standard 
deviation), the percentage of reconstructed pulses with respect to the number of pulses in 
the original synthetic pulse train (true positive statistics) and the percentage of misplaced 
pulses with respect to the number of reconstructed pulses (false positive statistics). The 
results are classified according to the number of active MUs and the simulated SNR.     
 

Number 
of active 

MUs 

SNR 
[dB] 

Average 
number of 

reconstructed 
innervation 
pulse trains 

Portion of 
reconstructed 

pulses [%] 

Portion of 
misplaced 
pulses [%] 

20 3.8 ± 0.9 90.0 ± 12.0  5.9 ± 6.0 
15 3.3 ± 1.3 81.6 ± 14.6  7.5 ± 7.0  
10 2.8 ± 0.9  77.3 ± 16.0 12.7 ± 8.7  
5 2.3 ± 0.5 66.4 ± 11.4  14.3 ± 8.0  

5 

0 1.6 ± 0.5 60.8 ± 5.9 18.7 ± 9.1  
20  7.3 ± 1.1 89.0 ± 14.7 5.0 ± 8.7 
15 6.1 ± 0.8 83.9 ± 14.2  5.9 ± 8.9  
10 4.7 ± 1.0 76.7 ± 14.5  9.4 ± 11.0  
5 2.2 ± 0.8  68.6 ± 10.4   13.6 ± 8.4  

10 

0 0.7 ± 0.8  57.6 ± 4.1  21.5 ± 9.6  
 
Table 6.2. The number of MUs (mean ± standard deviation) reconstructed by the method 
based on TF distributions, and the average norm of the difference (6.1) between the 
MUAPs reconstructed from the mixing matrix and their reference values. The results 
were obtained on the synthetic signals in the case of 5 and 10 active MUs, respectively.  
 

Number 
of active 

MUs 

SNR 
[dB] 

Average number of 
reconstructed MUs 

Average norm 
 ijd  [%]  

20 3.8 ± 0.9 52.6 ± 5.6  
15 3.3 ± 1.3 56.9 ± 9.2 
10 2.8 ± 0.9  58.3 ± 9.7  
5 2.3 ± 0.5 60.4 ± 6.4  

5 

0 1.6 ± 0.5 67.5 ± 7.5  
20  7.3 ± 1.1 68.0 ± 12.9 
15 6.1 ± 0.8 70.0 ± 12.8  
10 4.7 ± 1.0 71.4 ± 13.2  
5 2.2 ± 0.8  72.3 ± 11.8   

10 

0 0.7 ± 0.8 78.2 ± 13.1  
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6.1.2 Method based on higher-order statistics  
 
The efficiency of all possible decomposition methods which are based on higher-order 
statistics decreases whenever: 

• the noise is not Gaussian, 
• the sources are not independent and identically distributed (i.i.d.), 
• the processed signals are too short to provide the accurate estimation of cumulants 

(4.34). 
 
In the case of synthetic EMG signals the noise was simulated white and Gaussian and we 
can readily expect the w-slices will prove their high resistance to it. Having the signals 
limited to length of 30720 samples we can also assume (4.34) will relatively accurately 
estimate the values of cumulants. The main source of errors will, therefore, be the non-
orthogonal sources. The latter are in the case of synthetic surface EMG signals still 
independent, but exhibit the overlapping pulses which contribute the non-zero values to 
the cross-cumulants of sources. As a results, the Barlett-Brillinger-Rosenblatt equation 
fails to model the system accurately and the Newton-Gauss optimisation converges to the 
wrong solution. However, w-slices do not suppose the sources extended by their delayed 
repetitions, which guarantees the number of overlapped pulses is much smaller than in 
the case of other two methods (the IC method and TF-based method). Therefore, we can 
assume the decomposition method based on the HOS will still manage to reconstruct 
good estimates of the true MUAPs.  
 
A nice property of HOS–based decomposition methods is their ability to reconstruct the 
system responses also when the number of sources by far exceeds the number of 
measurements. Given the number of sources and the length of the corresponding system 
responses, the required number of measurements can be calculated by (4.42). Setting the 
number of sources to 20 and the length of system responses to L=25 we see that all the 
system responses can be reconstructed from a single measurement. The derived 
estimation is highly theoretical. In practice, various calculation errors hinder the 
decomposition and the number of sources reconstructed from a single measurement drops 
drastically. HOS-based decomposition technique, presented in this dissertation, 
comprises two steps. While the Newton-Gauss optimisation allows more sources than 
measurements, the w-slices assume the number of sources does not exceed the number of 
measurements.   
 
All the properties of HOS are not favourable. One of the most obvious drawbacks is their 
computational complexity. In the case of w-slices, the computational complexity 
increases with the square of the length of system responses and also with the square of 
the estimated number of sources. Consequently,  the decomposition method was tested 
only on the signals with 5 active MUs. The computational complexity of Newton-Gauss 
optimisation is also responsible for our decision to test the method only on 5 out of 50 
available surface EMG measurements. In all tests on the synthetic signals, only the 
measurements corresponding to the relative simulated uptake positions (3,3), (3,4), (3,5), 



 91

(3,6) and (3,7) were decomposed, where pair (i, j) denotes the i-th row and j-th column. 
All the other measurements were simply discarded.  
 
When w-slices are used to coarsely estimate the MUAPs, we first need to know their 
length. Setting the sampling frequency to 1 kHz, the MUAP length may be expected at 
around 25 samples. There is yet the condition from (4.59) to be met: 
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In the case of surface EMG signals this condition is relatively difficult to attain. The 
closest possible approximation is achieved when the surface EMG measurements are 
shifted in time. Taking the travelling of AP into consideration this implies a longitudinal 
placement of electrodes and also justifies our decision to take 5 measurements form the 
central column of electrodes. On the other hand, one must be aware that each 
decomposed MUAP is going to be normalized by its starting sample set to 1. Hence, the 
amplitudes of MUAPs will be lost in the decomposition process. The fact that we cannot  
entirely met the condition from (4.59) does not hinder the decomposition. As already 
explained, the w-slices are used to only coarsely estimate the shapes of MUAPs, while 
their final form is gained through the Newton-Gauss optimisation.   
 
Applying our HOS-based method to the synthetic EMG signals with 5 active MUs, the 
decomposition process can be summarized in the following 4 steps: 
 

1. Take measurements of surface EMG which correspond to the longitudinal 
positions of electrodes. In our case, the measurements from the central columns of 
electrodes (the measurements corresponding to uptake positions (3,3), (3,4), (3,5), 
(3,6) and (3,7) were processed. 

 
2. Calculate the third-order cumulants of these measurements only up to the lags 1τ  

and 2τ  which correspond to the estimated MUAP length L=25. 
 

3. Use (4.57) and (4.58) to estimate the casual and anti-casual cumulant matrices Sa 
and Sc, and calculate the coarse estimates of MUAPs according to (4.59) and 
(4.60).  

 
4. Optimise the coarse estimation by the Newton-Gauss optimisation. In order to 

reduce the computational complexity as much as possible, mainly because of huge 
dimensions of matrix Σ , it  is wise to select an appropriate subset of the cumulant 
values in matrix C (4.62), such that the conditions given by (4.42) and (4.43) are 
just fulfilled. In our experiments, we considered only the first quadrants of 
cumulants Cklm, i.e. 2410 1 =−≤≤ Lτ , 2410 2 =−≤≤ Lτ . The size of step iδ  in 
(4.66) was set by the method of bisection, whereas the vector of source cumulants 

[ ]TKγγ1=γ  was, according to (4.68), averaged over all possible 
combinations of indices k, l and m. 
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In all our experiments, the optimisation was terminated whenever all the possible 2-
norms of pair-wise differences among the MUAPs reconstructed in three successive 
optimisation steps calculated below 5 % (with respect to the 2-norm of the reconstructed 
MUAP). On average, the optimisation converged in 30 optimisation steps.  
 
The reconstructed MUAPs are partially depicted in Figs. 6.3 and 6.4, where only two of 
many reconstructed MUAPs are illustrated in dependence of SNR. Quick visual 
inspection of the results confirms the expected resistance to the Gaussian noise. Although 
the shape of MUAPs changes with SNR, the noise influence is relatively small.  
 
In order to quantify the decomposition efficiency, the reconstructed MUAPs were also 
numerically compared against their reference shapes. In all our experiments, the 2-norm 
of difference between the reconstructed and the reference MUAP defined in (6.1) was 
used as a measure. Since the value of the MUAP difference depends also of the norm on 
the MUAPs, the compared MUAPs (6.1) were first normalized. Expressing the difference 
referring to the 2-norm of the reference MUAPs and taking into consideration that the 
norm of a normalized vector equals to 1, the introduced comparison criterion takes its 
final form: 
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where we write )]1(),...,0([ −= Lhh ijijijh  and )]1(),...,0([ˆ −= Lhh ijijijh  to denote the 
reference and the reconstructed MUAP hij(n).  
 
The results were averaged over all the simulation runs with the same SNR and are 
summarized in Table 6.3. Only the MUAPs whose norm differences (6.1) were below the 
threshold of 30 % were classified as identified. The robustness to the Gaussian noise was 
also confirmed by the numeric results. The mean 2-norm difference (6.1) yields 12.0 % at 
SNR = 20 dB and increases only for 3.7 %  at SNR = 0 dB. 
 
Table 6.3. The number of MUAPs (mean ± standard deviation) reconstructed by w-slices 
in the case of 5 active MUs, and their comparison to the reference shape in the 
dependence on the SNR.  The applied norm of difference ijd  is defined by (6.1).  

The number 
of active MUs 

SNR 
[dB] 

Average number of 
reconstructed MUs 

Average norm 
difference ijd  [%] 

20 3.6 ± 0.8 12.0 ± 10.0 
15 3.4 ± 0.6 12.0 ± 11.0  
10 3.2 ± 0.5   11.3 ± 10.0  
5 2.7 ± 0.8 13.1 ± 12.5  

5 

0  2.0 ± 0.9 15.7 ± 12.9  
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Figure 6.3: The MUAPs, reconstructed by w-slices from the synthetic surface EMG 
signals of length 30720 samples in the case of 5 active MUs and at SNR=20 dB (light 
grey dashed line), SNR=10 dB (dark grey dashed line), SNR=0 dB (black dotted line): a) 
simulation 1, contribution of the second MU to the measurement (3,4), b) simulation 1, 
contribution of the second MU to the measurement (3,5). Reference values are depicted 
with black solid lines. 
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Figure 6.4: The MUAPs, reconstructed by w-slices from the synthetic surface EMG 
signals of length 30720 samples in the case of 5 active MUs and at SNR=20 dB (light 
grey dashed line), SNR=10 dB (dark grey dashed line), SNR=0 dB (black dotted line): a) 
simulation 2, contribution of the first MU to the measurement (3,5), b) simulation 2, 
contribution of the fourth MU to the measurement (3,7). Reference values are depicted 
with black solid lines. 
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6.1.3 Inverse correlation based method  
 
In Chapter 5, we derived a completely novel decomposition approach, the so called 
inverse correlation (IC) based method. We demonstrated its efficiency in the case of 
orthogonal sources, and assessed the influences of noise and non-orthogonal sources. We 
also argued the IC method can be used for the decomposition of under-determined 
MIMO systems. Finally, we explained how the performance drops with the ratio between 
the number of measurements and the number of sources. We concluded that, even when 
the number of sources exceeds the number of measurements by factor 2, the method will 
still be able to completely reconstruct at least a part of the sources.  
 
In this section we will test its performance on the synthetic surface EMG signals. We will 
assess the impact of noise and check the hypothesis that the MUs with low firing rates are 
more likely to be decomposed. Finally, we will evaluate the reconstruction of MUAPs by 
the spike triggered sliding window averaging technique. 
 
To verify how the method’s efficiency depends on the ratio between the number of 
sources and the number of measurements we fixed the number of measurements. The 
latter were, regardless to the number of active MUs, always extended by the factor K=10. 
In other words, we added 9 delayed repetitions to each measurement, which increased the 
number of measurements to 500. The number of the extended sources depends on the 
number of active MUs and reaches 170, 340 and 680 for 5, 10 and 20 active MUs, 
respectively. In the last case, the number of sources exceeds the number of measurements 
by 1.36.  
  
The applied decomposition procedure can be summarized in the following 8 steps: 
 

1. Calculate the correlation matrix of extended measurements, estimate the noise 
variance, 2σ̂ , and use (5.4) to calculate the activity index. Using the estimated 
noise variance determine the noise threshold:  

 

1
12

ˆ ˆ2
−= xRσσt   (6.2) 

 
where 

1
1−

xR  denotes 1-norm of matrix 1−
xR . Set the values in which the activity 

index does not exceed the noise threshold to zero. When 1−
xR  is ill-conditioned 

use the procedure described in 5.3 to cut the eigenvalues of xR  and to improve its 
sensitivity to noise. The optimal degree of cutting can be determined from the 
eigenvalues of matrix xR . The higher the degree of cutting, the lower the 
sensitivity to noise. Empirically, at least 80 % of the energy of original matrix xR  
must be preserved after cutting in order to prevent the loss of information on the 
mixing matrix.  
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2. Calculate the median value of the activity index and denote by n0 an arbitrary time 
moment (the sample of the activity index) in which the median value is reached.  

 
3. Use (5.8) to reconstruct a superimposition of innervation pulse trains )(

00 , nv
nGn  and 

randomly choose one of its pulses exceeding the noise threshold 2σ̂t . Denote by 
n1 the time moment of the selected pulse and reconstruct the superimposition 

)(
11, nv

nGn .  

 
4. In the product )()(

1100 ,, nvnv
nGnnGn ⋅ , select all the pulses exceeding the noise 

threshold 2
ˆ 2σt  and denote their number by Z. Denote by ni, i=2,3,..Z+1, the time 

moments in which the i-th selected pulse appears and reconstruct the 
superimpositions )(, nv

ii nGn . Multiply (element-wise) each superimposition 

)(, nv
ii nGn  by )()(

1100 ,, nvnv
nGnnGn ⋅ .  

 
5. Mutually compare all the products )()()( ,,,

1100
nvnvnv

ii nGnnGnnGn ⋅⋅  and classify them 

according to the number of overlapped pulses. Put all the time moments ni and nj, 
for which the products )()()( ,,,

1100
nvnvnv

ii nGnnGnnGn ⋅⋅  and  

)()()( ,,,
1100

nvnvnv
j

j nGnnGnnGn ⋅⋅  overlap at least in J pulses, to the same set Ai. The 

threshold J can be computed as a product of the signal length and the lowest 
possible firing frequency (approximately 6 Hz in the case of EMG signals). 

 
6. For all the sets Ai whose cardinal number exceeds the threshold 2J/3, calculate the 

average vector of extended measurements: 
 

∑=
∈ ii

i An
i

i
A n

Acard
)(

)(
1 xx  

 
and use (5.29) to reconstruct a single innervation pulse train. Set to zero the 
activity index values in all the time moments which correspond to the pulses in 
the reconstructed innervation pulse train. 

 
7. Compare the obtained innervation train to all pervious reconstructed pulse 

sequences and classify it either as a new pulse sequence or already detected pulse 
sequence.  

 
8. Repeat steps 2 to 7 until all the values of the activity index are set to zero.   

 
In our experiments the cutting of the eigenvalues in matrix xR  (Section 4.3) was limited 
to 50 % (50 % of eigenvalues were set to zero). Although the selected degree of cutting 
may seem high, the eliminated eigenvalues represented only 10 % of the original matrix 
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energy, on average.  Following the advice in step 5, the threshold J  was estimated to 
6·30=180, where 30 stands for the length of the synthetic signals (in seconds) and the 6 is 
the lowest expected MU firing rate (in Hz). The decomposition results are summarized in 
Table 6.4. Some of the reconstructed innervation pulse trains are further illustrated in 
Figs. 6.5, 6.6 and 6.7. 
 
Table 6.4: The number of reconstructed MUs' innervation pulse trains (mean ± standard 
deviation), the percentage of reconstructed pulses with respect to the number of pulses in 
the original synthetic pulse trains (true positive statistics), and the percentage of 
misplaced pulses with respect to the number of reconstructed pulses (false positive 
statistics), in dependence of the number of active MUs and SNR.  

Number of 
active MUs 

SNR 
[dB] 

Average number of 
reconstructed 

innervation pulse 
trains 

Percentage of 
accurately 

reconstructed 
pulses 

Percentage 
of misplaced 

pulses 

20 4.7 ± 0.6 99 ± 0.6 0.0 ± 0.0 
15 4.2 ± 0.6 99 ± 0.9 0.0 ± 0.0 
10 3.9 ± 0.7 97 ± 2.3 0.0 ± 0.0 
5 3.2 ± 0.6 95 ± 3.8 1.0 ± 2.0 

5 

0 2.0 ± 0.9 93 ± 4.1 2.0 ± 3.0 
20 8.3 ± 1.3 99 ± 0.8 0.0 ± 0.0 
15 7.0 ± 1.6 99 ± 1.1 0.0 ± 0.0 
10 6.4 ± 1.9 97 ± 2.6  0.0 ± 0.0 
5 4.6 ± 1.7 94 ± 4.7 1.0 ± 2.0 

10 

0 2.6 ± 1.4 91 ± 5.1 3.0 ± 4.0 
20 10.4 ± 1.4  99 ± 0.7  0.0 ± 0.0 
15 8.6 ± 1.7 98 ± 1.3 1.0 ± 3.0 
10 5.7 ± 1.3 96 ± 3.5 1.0 ± 3.0 
5 3.5 ± 1.3 93 ± 5.1 3.0 ± 5.0 

20 

0 2.3 ± 1.9 91 ± 6.3 4.0 ± 5.0 
 
Evaluating the reconstructed innervation pulse trains, only the trains containing at most 
30 % of misplaced pulses were considered identified. All other reconstructions were 
simply discarded. In the case of 5 and 10 active MUs (the over-determined case) and 
SNR of 20 dB, almost all the simulated MUs were completely reconstructed. Simulating 
20 active MUs (the under-determined case), the portion of reconstructed MUs dropped to 
50 %. Increasing the noise influence, both over-determined cases (5 and 10 active MUs) 
suffered approximately the same drop in performance. At SNR = 10 dB, the method 
reconstructed approximately 80 % of the MUs which were identified at SNR of 20 dB, 
while at SNR of 0 dB the portion of the recognised MUs dropped to 35 %. The drop in 
performance was more obvious in the case of 20 active MUs (the under-determined case). 
At SNR of 10 and 0 dB, only 55 % and 25 % of the MUs identified at SNR = 20 dB were 
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recognised, respectively. Regardless the number of active MUs and the SNR, the 
reconstructed innervation pulse trains exhibited almost perfect match with their reference 
values, while the number of misplaced pulses was negligible.   
 
The theory predicts the IC method should reconstruct the MUs with lower firing 
frequencies more successfully. In the decomposition process, the MUs with high firing 
frequencies are multiplied by the smaller diagonal elements of the inverse correlation 
matrix of sources (Appendix 5A) and are less likely to exceed the noise threshold. 
Following the same conclusions, the MUs with low firing frequencies have higher 
contributions in the reconstructed pulse trains and are more likely to surpass the noise 
level. To test this hypothesis we observed the firing rates of the reconstructed MUs. The 
firing rates of the simulated MUs were normally distributed around the mean of 15 Hz, 
while the standard deviation was set to 4 Hz. The lowest simulated firing rates were 
around 10 Hz, whereas the highest ones outreached 19 Hz.  
 
The decomposition efficiency also depends on other parameters of MUs, mainly on the 
depth of MU in the muscle tissue and on the number of muscle fibres comprising each 
MU. Both parameters are strongly correlated because they both affect the amplitude of a 
MUAP as detected on the skin surface. Superficial MUs with a high number of muscle 
fibres produce stronger MUAPs and are expected to resist the influence of noise with 
more success. Therefore, evaluating the reconstructed MUs, the influence of all three 
parameters (the firing rate, depth in the muscle tissue, and the number of fibres) must be 
taken into consideration. Due to the clarity reasons, we combined them in the following 
morphological index: 
 

fir

M

m
m

Af f

Amp
MI

∑
= =1

,

1

 
(6.3) 

 
where mAmp  stands for the average peak-to-peak amplitude of a MUAP as detected by 
the m-th electrode, and firf  denotes the average MU firing rate. The higher the value of 
the morphological index, the stronger the contribution of the MU to the SEMG 
recordings. The decomposition results are presented in Table 6.5.  
 
The results in Table 6.5 disagree with the theory. No significant impact of the firing rate 
was noticed. The reconstructed MUs clearly show their correlations with the depth of 
MUs in the muscle tissue and with the number of muscle fibres. As expected, the method 
most successfully recognises the superficial MUs with a high number of muscle fibres, 
while all the others are treated as a background noise. Increasing the noise, the average 
depth of the reconstructed MUs decreases, while the number of their fibres increases. 
Recall all the parameters were chosen randomly in each simulation run, independently 
from each other. Therefore, it is highly unlikely for the MUs with low firing rates only to 
be deeper in the muscle tissue or to be composed out of smaller number of fibres. This 
fact is also confirmed by the average firing rates of the identified and missed MUs (Table 
6.5, columns 7 and 8). The average firing rate in both groups yields 15.5 Hz on average, 
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whereas the standard deviation is always around 3.5 Hz. To conclude, the results clearly 
demonstrate the influence of the MU firing rate is negligible.   
 
Table 6.5: Values of parameters (mean ± standard deviation) of the identified (+) and 
missed (–) MUs: the MU depth in the muscle tissue, the number of fibres, and the 
average firing rate, versus the number of active MUs and SNR. The normalized values of 
the morphological index are depicted in the right-most column. Results were obtained on 
the synthetic SEMG signals.   
 

Average 
depth in the 

muscle 
tissue [mm] 

Average 
number of 

fibres 

Average 
firing 

frequency 
[Hz] 

Average 
value of 

index 
AfI ,  

Number 
of 

active  
MUs 

SNR 
[dB] 

+ – + – + – + – 
20 6.1     

± 1.0 
8.3 

± 0.6 
156 
±53 

129 
± 65 

15.5
± 3.5 

15.3
± 3.9 

0.55 
± 0.24 

0.23 
± 0.14

15 6.1 
± 1.0 

7.9 
± 1.5 

168 
± 45 

98 
± 41 

15.3
± 3.0 

15.9
± 3.1 

0.61 
± 0.21 

0.25 
± 0.18

10 6.1 
± 1.0 

7.1 
± 1.4 

175 
± 40 

96 
± 34 

15.6
± 3.2 

15.4
± 3.4 

0.63 
± 0.20 

0.28 
± 0.19

5 5.9 
± 0.8 

6.8 
± 1.4 

173 
± 41 

116 
± 53 

15.5
± 3.2 

15.7
± 3.4 

0.65 
± 0.21 

0.32 
± 0.12

5 

0 5.8 
± 0.4 

6.8 
± 1.4 

188 
± 40 

124 
± 43 

15.3
± 3.3 

15.5
± 3.6 

0.70 
± 0.22 

0.39 
± 0.15

20 6.6 
± 1.0 

7.8 
± 1.0 

161 
± 47 

93 
± 50 

16.0
± 2.8 

14.9
± 3.8 

0.57 
± 0.22 

0.29 
± 0.18

15 6.6 
± 1.0 

6.8 
± 0.9 

165 
± 45 

100 
± 51 

15.9
± 2.9 

14.9
± 2.9 

0.59 
± 0.22 

0.30 
± 0.19

10 6.4 
± 1.0 

6.5 
± 0.8 

170 
± 46 

109 
± 46 

16.0
± 2.7 

15.2
± 2.8 

0.63 
± 0.19 

0.31 
± 0.17

5 6.0 
± 0.9 

6.5 
± 0.9 

178 
± 48 

124 
± 47 

15.9
± 2.8 

15.6
± 2.8 

0.67 
± 0.16 

0.39 
± 0.22

10 

0 6.1 
± 0.8 

6.4 
± 1.0 

200 
± 36 

132 
± 49 

15.9
± 2.8 

15.8
± 2.9 

0.68 
± 0.17 

0.46 
± 0.24

20 6.0 
± 0.6 

7.2 
± 0.9 

171 
± 40 

125 
± 52 

15.1
± 3.2 

15.7
± 2.5 

0.49 
± 0.18 

0.26 
± 0.14

15 6.0 
± 0.7 

7.0 
± 1.0 

176 
± 40 

128 
± 50 

15.8
± 2.7 

15.0
± 3.6 

0.53 
± 0.17 

0.27 
± 0.13

10 5.9 
± 0.5 

6.9 
± 1.0 

176 
± 48 

138 
± 49 

15.0
± 3.2 

15.9
± 2.9 

0.55 
± 0.18 

0.31 
± 0.16

5 5.7 
± 0.5 

6.8 
± 1.0 

203 
± 25 

139 
± 49 

15.9
± 3.0 

16.0
± 2.7 

0.69 
± 0.13 

0.33 
± 0.15

20 

0 5.7 
± 0.3 

6.5 
± 1.0 

206 
± 24 

142 
± 50 

16.0
± 2.8 

15.9
± 2.7 

0.70 
± 0.14 

0.34 
± 0.17
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Figure 6.5: Original synthetic innervation pulse trains (black) and the pulse trains 
reconstructed by the IC method (grey) in the case of 5 active MUs (simulation 1, MU 3) 
and at SNR = 20, 15, 10, 5 and 0 dB.  
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Figure 6.6: Original synthetic innervation pulse trains (black) and the pulse trains 
reconstructed by the IC method (grey) in the case of 10 active MUs (simulation 5, MU 6) 
and at SNR = 20, 15, 10, 5 and 0 dB.  
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Figure 6.7: Original synthetic innervation pulse trains (black) and the pulse trains 
reconstructed by the IC method (grey) in the case of 20 active MUs (simulation 2, MU 
16) and at SNR = 20, 15, 10, 5 and 0 dB.  
 
 
Finally, let us evaluate the results of the spike triggered sliding window averaging 
technique, described in Section 5.1. Reconstructing the MUAPs form the synthetic 
signals, the rectangular window )(lΨ  of length 50 samples was centred to the position of 
every identified pulse of the corresponding MU. Averaging 50 measurements, 50 
different MUAPs of each MU were reconstructed. Using the norm of differences (6.1), 
the reconstructed MUAPs were numerically compared to their reference values. The 
results are presented in Table 6.6, while a few examples of the reconstructed MUAPs are 
depicted in Figs. 6.8, 6.9 and 6.10. 
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Figure 6.8: The MUAPs (contribution of MU 3 to the measurement (3,5)) reconstructed 
by the spike triggered sliding window averaging technique (390 averages) from the 
synthetic surface EMG signals of length 30720 samples in the case of 5 active MUs 
(simulation 1) and at SNR=20 dB (light grey dashed line), SNR=10 dB (dark grey dashed 
line), SNR=0 dB (black dotted line). Reference values are depicted black solid. 
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Figure 6.9: The MUAPs (contribution of MU 6 to the measurement (3,5)) reconstructed 
by the spike triggered sliding window averaging technique (386 averages) from the 
synthetic surface EMG signals of length 30720 samples in the case of 10 active MUs 
(simulation 5) and at SNR=20 dB (light grey dashed line), SNR=10 dB (dark grey dashed 
line), SNR=0 dB (black dotted line). Reference values are depicted black solid. 
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Figure 6.10: The MUAPs (contribution of MU 16 to the measurement (3,5)) 
reconstructed by the spike triggered sliding window averaging technique (418 averages) 
from the synthetic surface EMG signals of length 30720 samples in the case of 20 active 
MUs (simulation 2) and at SNR=20 dB (light grey dashed line), SNR=10 dB (dark grey 
dashed line), SNR=0 dB (black dotted line). Reference values are depicted black solid. 
 
Table 6.6: The number of reconstructed MUs (mean ± standard deviation) and a 
comparison of the reconstructed MUAPs to their reference values (the 2-norm of the 
MUAP differences ijd  defined in (6.1)) versus the number of active MUs and SNR. 

Number 
of active 

MUs 

SNR 
[dB] 

Average number of 
reconstructed MUs 

Average norm ijd  
[%] 

20 4.7 ± 0.6 8.5 ± 5.3 
15 4.2 ± 0.6 7.5 ± 4.6 
10 3.9 ± 0.7 7.6 ± 4.7 
5 3.2 ± 0.6 7.2 ± 4.8 

5 

0 2.0 ± 0.9 6.7 ± 5.1 
20 8.3 ± 1.3 9.3 ± 5.4 
15 7.0 ± 1.6 8.8 ± 5.5 
10 6.4 ± 1.9 8.3 ± 5.4 
5 4.6 ± 1.7 9.3 ± 6.5 

10 

0 2.6 ± 1.4 6.8 ± 4.9  
20 10.4 ±1.4 13.9 ± 8.6 
15 8.6 ± 1.7 14.2 ± 9.3  
10 5.7 ± 1.3 12.7 ± 8.5 
5 3.5 ± 1.3 11.7 ± 9.7 

20 

0 2.3 ± 1.9 11.3 ± 8.1 
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6.2 Results on real surface EMG signals 
 
The experiments were conducted with signals from the dominant biceps brachii, recorded 
in Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Politecnico di Torino, 
Italy. Nine healthy male subjects of age 26.8 ± 2.2 years, height 179 ± 7 cm and weight 
of 72.1 ± 8.3 kg participated in our study. All subjects gave their informed consent. 
Surface EMG signals were detected by an array of 13×5 electrodes (without the four 
corner electrodes) of size 1×1 mm and of inter-electrode distance of 5 mm (Fig. 6.11). 
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Figure 6.11: Array of electrodes (grey circles) used for detection of real surface EMG 
signals and its relative position with respect to the investigated muscle. The y axis is 
aligned with the muscle fibres, while its origin is lined up with the estimated location of 
the dominant innervation zone. Proximal and distal half of the muscle fibres are also 
indicated. The coordinates (x,y) below the corresponding electrodes denote their relative 
position in the array, while LDD exemplifies how three different electrodes comprise the 
longitudinal double differential spatial filter (source: LISiN, Politecnico di Torino, Italy). 
 
The experimental protocol was designed by world-recognized bioengineering experts 
Prof. Roberto Merletti, Dr. Dario Farina and Marco Gazzoni and consisted of:  
 

1. The dominant arm of the subject was placed into the isometric brace at 120° (Fig. 
6.12).  

 
2. Three five-second contractions at maximum voluntary contraction (MVC) force 

were performed separated by 2 minutes. Using the torque sensors (Fig. 6.12), the 
maximum contraction force was measured and averaged over all three 
measurements. Afterwards, a 5-minute rest was given to the subject. 
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3. The skin was slightly abraded with abrasive paste and moistened to improve the 
electrode-skin contact. 

 
4. The location of the innervation zone in the dominant biceps brachii of the subject 

was determined from the travelling AP detected during voluntary low force 
muscle contraction by the linear array of 16 electrodes of size 10×1 mm and the 
inter-electrode distance of 10 mm. Afterwards, the linear array of electrodes was 
removed and the skin remoistened.   

 
5. The array of 61 electrodes (Fig. 6.11) was placed over the distal half of dominant 

biceps brachii with its third electrode row centred over the estimated innervation 
zone and columns aligned with the muscle fibres.  

 
6. Surface EMGs were recorded during the 30 s long isometric voluntary muscle 

contraction sustained at 5 % and 10 % of MVC. After each contraction the subject 
relaxed for 5 minutes. The contraction force was measured by the torque sensor 
and displayed on the oscilloscope to provide the visual feedback to the subjects. 

 
The detected signals were amplified (gain set to 10000) by a 64-channel EMG amplifier 
(LISiN; Prima Biomedical & Sport, Treviso, Italy), band-pass filtered (-3 dB bandwidth, 
10 Hz – 500 Hz), and sampled at 2500 Hz by 12-bit A/D converter. Longitudinal double-
differential recording technique was used with the adjacent electrode pairs along the 
columns in the electrode array (Fig. 6.11), resulting in 51 SEMG recordings. The noise 
and movement artefacts were visually controlled and reduced by applying water to the 
skin surface. Before any further processing, all the measurements were digitally filtered 
to suppress the power-line interference.  
 
In the case of real SEMG signals, of course, there are no reference innervation trains 
available. Hence, the performance must be evaluated by other, indirect measures. The 
ones used in this study were:  
 

• the regularity of the reconstructed firing patterns,  
• the nature of IPI variability, and  
• the shape of reconstructed MUAPs.  

 
Supposing short-term low level contractions, the MU innervation trains are well known 
to follow regular, relatively slowly changing patterns. IPI irregularities are often 
modelled as realizations of a Gaussian random variable whose maximum value in normal 
conditions should not exceed the 20 % limit of the mean IPI [56, 60, 90]. Any larger 
irregularity (in the sense of discussion above), therefore, must be taken as an early 
warning of possibly wrong decomposition. Similarly, the reconstructed innervation 
pulses can be evaluated with respect to the IPI distribution. Several statistical tests 
(Jarque-Bera, Kolmogorov-Smirnov, Lilliefors) can be applied to test the probability that 
the obtained IPI realisation follow Gaussian distribution (so called p-value in the 
hypothesis test terminology). Possible non-stationarities of the MU firing rate can be 
compensated by modelling the mean IPI as a function of time.  
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Figure 6.12: The isometric brace used to keep the elbow angle constant at 120 degrees 
during the acquisition of surface EMG signals. Torque sensors are located at the joint of 
the rigidly connected parts of isometric brace (source: LISiN, Politecnico di Torino, 
Italy).   
  
The last criterion is based on the MUAP shape and is the most intuitive one. Double-
differential recording technique implies relatively firm limitations to the shapes of 
MUAPs. Variability is only expected in the peak-to-peak value, the length of MUAPs 
and minor shape details (mainly in the MUAP’s tail regions). Furthermore, spatially 
adjoining electrodes are expected to detect very similar MUAP shapes. Finally, by 
examining the MUAP’s shape in different channels, the relative positions of the detected 
MU with respect to the array of electrodes, and also the travelling of APs should be 
traceable.  
 
Decomposing the real signals by three different decomposition techniques the results can 
also be mutually compared. For the clarity reasons, it is then appropriate to first provide 
the results of the most efficient decomposition method. Afterwards, the remaining 
decomposition techniques can be evaluated with respect to the superior method. The 
results on the synthetic signals proved the IC method by far outperforms the method 
based on TF distributions as well as the HOS-based method. The similar results can be 
expected also on the real signals. Therefore, we will reverse the order of subsections 
(with respect to the subsection in Section 6.1). We will first evaluate the results of the IC 
method. The method based on TF distributions will be evaluated in Subsection 6.2.2, 
while the results of the HOS-based decomposition method will be described in 
Subsection 6.2.3. Evaluating the results of the last two methods, we will rely upon the 
results of the IC method. Taking into account all the described indirect measures, the 
number of successfully reconstructed MU trains will be considered the most significant 
performance criterion.  
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6.2.1 Inverse correlation based method 
 
Let us first evaluate the results of the IC method. Decomposing the real signals we 
followed the procedure described in Subsection 6.1.3. All 51 measurements of surface 
EMG were used in our experiments. The measurements with 5 % muscle contraction 
were extended by the factor K=10 (9 delayed repetitions of each measurement were 
added) resulting in 510 extended measurements. In the case of 10 % muscle contraction, 
the measurements were extended by the factor K=15, yielding 765 extended 
measurements. The average length of MUAPs was estimated to 20 ms (50 samples). 
Supposing the over-determined MIMO system, the assumed number of sources yields 8 
in the case of 5 % contraction, and 11 in the case of 10 % muscle contraction. Although 
the number of active MUs can be expected much higher, there are at least three crucial 
reasons for limiting the number of extended measurements. The first and the most 
obvious is the computational complexity. The IC method is based on a relatively high 
number of matrix multiplications and their computational complexity increases with the 
square of the matrix size.  The second reason originates in the used double-differential 
recording technique. The latter will filter out the superficial MUs. Due to their mutual 
resemblance the contributions of deeper MUs to different electrodes constituting the 
same spatial filter will be cancelled. The third and the final reason is obvious form the 
results on the synthetic signals. They proved the IC method is quite capable of 
decomposing under-determined MIMO systems. Hence, the assumptions of 9 and 12 
active MUs, respectively, should be used only as an orientation and are not restrictive.  
 
Evaluate now the reconstructed innervation pulse trains. It is well known that the IPI 
variability is normally limited to 10-20 % of the mean IPI. Furthermore, supposing low 
muscle contraction levels only slow changes of MUs’ firing rates in time are possible. 
The reconstructed innervation pulse trains are, hence, expected to follow relatively strict 
firing patterns. Calculating the IPI variability of the reconstructed pulse trains over a 
longer time interval, the slow changes of firing rate must be taken into consideration. In 
our experiments, the reconstructed innervation pulses were first divided into 6 epochs of 
equal length. In each epoch the mean firing rate and the IPI variability were calculated. 
The results were averaged over all 6 epochs and are depicted in Tables 6.7 and 6.8. 
 
The results in Tables 6.7 and 6.8 prove all the reconstructed innervation pulse trains agree 
with theoretical expectations. The firing rates of the reconstructed MUs are estimated 
between 8 and 16 Hz. The IPI variability of the reconstructed pulse trains is concentrated 
around the mean of 10 % and rarely reaches its upper limit of 20 %. Statistical moments 
enable only limited conclusions, but s detailed analysis quickly reveals the regularity of 
the reconstructed innervation pulse trains. Examples of the reconstructed innervation 
pulse trains are illustrated in Figs. 6.13 to 6.16. The IPI variability is depicted in Figs. 
6.17, 6.18 and 6.19.  
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Table 6.7: The number of detected innervation trains, their average firing rate (mean ± 
standard deviation), and variability of inter-pulse interval (with respect to the mean firing 
rate of the corresponding MU). The innervation pulse trains were reconstructed from 30 s 
long SEMG signals recorded during the isometric 5 % MVC measurements of the 
dominant biceps brachii of nine healthy male subjects (age 26.8 ± 2.2 years, height 179 ± 
7 cm, weight 72.1 ± 8.3 kg).  
 

Subject Number of 
reconstructed MUs 

Average firing rate 
[Hz] 

Relative IPI 
variability [%] 

1 4 12.1 ± 1.7 10.7 ± 2.8 
2 4 15.1 ± 1.5 11.3 ± 1.2 
3 2 11.4 ± 1.7 15.0 ± 2.5 
4 2 11.4 ± 0.1 10.3 ± 2.8 
5 3 14.0 ± 0.3 18.1 ± 4.7 
6 5 12.8 ± 1.8 10.6 ± 2.0 
7 3 13.0 ± 0.3 14.5 ± 0.7 
8 5 9.7 ± 0.9 8.9 ± 2.6 
9 2 12.9 ± 0.7 12.0 ± 5.5 

 
Table 6.8: The number of detected innervation trains, their average firing rate (mean ± 
standard deviation), and variability of inter-pulse interval (with respect to the mean firing 
rate of the corresponding MU). The innervation pulse trains were reconstructed from 30 s 
long SEMG signals recorded during the isometric 10 % MVC measurements of the 
dominant biceps brachii of nine healthy male subjects (age 26.8 ± 2.2 years, height 179 ± 
7 cm, weight 72.1 ± 8.3 kg). 
 

Subject 
Number of 

reconstructed 
MUs 

Average firing rate 
[Hz] 

Relative IPI variability 
[%] 

1 5 10.8 ± 1.4 15.3 ± 4.3 
2 10 13.9 ± 2.4 12.9 ± 3.6 
3 5 13.2 ± 1.6 18.8 ± 2.5 
4 3 9.5 ± 3.8 14.5 ± 5.6 
5 4 11.19 ± 4.9 16.8 ± 2.2 
6 8 14.13 ± 1.5 18.7 ± 4.0 
7 7 14.0 ± 1.3 19.0 ± 2.9 
8 8 10.6 ± 1.3 10.7 ± 3.7 
9 6 13.5 ± 1.9 15.7 ± 1.9 
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Figure 6.13: The MU innervation trains reconstructed by the IC method from 30 s long 
real SEMG signal. SEMG was recorded during an isometric 5 % MVC measurement of 
the dominant biceps brachii of subject 1 (age 26 years, height 176 cm, weight 68 kg). 
Only a part of the reconstructed innervation trains is depicted.   
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Figure 6.14: The MU innervation trains reconstructed by the IC method from 30 s long 
real SEMG signal. SEMG was recorded during an isometric 10 % MVC measurement of 
the dominant biceps brachii of subject 8 (age 31 years, height 180 cm, weight 65 kg). 
Only a part of the reconstructed innervation trains is depicted.   
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Figure 6.15: The MU innervation trains reconstructed by the IC method from 30 s long 
real SEMG signal. SEMG was recorded during an isometric 5 % MVC measurement of 
the dominant biceps brachii of subject 2 (age 25 years, height 170 cm, weight 63 kg). 
Only a part of the reconstructed innervation trains is depicted.   
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Figure 6.16: The MU innervation trains reconstructed by the IC method from 30 s long 
real SEMG signal. SEMG was recorded during an isometric 10 % MVC measurement of 
the dominant biceps brachii of subject 2 (age 25 years, height 170 cm, weight 63 kg). 
Only a part of the reconstructed innervation trains is depicted.   
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Figure 6.17: Inter-pulse interval in innervation pulse trains reconstructed by the IC 
method from 30 s long real SEMG signal. SEMG was recorded during an isometric 5 % 
MVC measurement of the dominant biceps brachii of subject 2 (age 25 years, height 170 
cm, weight 63 kg).   
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Figure 6.18: Inter-pulse interval in innervation pulse trains reconstructed by the IC 
method from 30 s long real SEMG signal. SEMG was recorded during an isometric 10 % 
MVC measurement of the dominant biceps brachii of subject 2 (age 25 years, height 170 
cm, weight 63 kg).   
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Figure 6.19: Inter-pulse interval in innervation pulse trains reconstructed by the IC 
method from 30 s long real SEMG signal. SEMG was recorded during an isometric 10 % 
MVC measurement of the dominant biceps brachii of subject 8 (age 31 years, height 180 
cm, weight 65 kg).   
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Figs. 6.13 to 6.19 demonstrate how IPI in the reconstructed pulse trains obey the 
physiologically induced restrictions. They also prove almost all pulses were identified. 
Missed pulses in Figs. 6.17 to 6.19 correspond to unusually high IPIs and we can quickly 
conclude there number is negligible. Depending on the MU firing rate, the number of the 
identified pulses varies between 300 and 500, while the estimated number of missed 
pulses varied between 5 and 15.   
 
Finally, the reconstructed innervation pulse trains were tested against the hypothesis that 
the IPIs are normally distributed. Several statistical tests (Jarque-Bera, Kolmogorov-
Smirnov, Lilliefors) were applied. In order to increase the size of the tested sample the 
time changes in MU firing rates were neglected. As a result, the tested sample included 
from 300 to 500 elements. None of the statistical tests applied could reject the hypothesis 
of Gaussian IPI variability. Although this fact can not be taken as a proof that the IPI 
truly follows the Gaussian distribution, it can be understood as a strong suggestion that 
the reconstructed results do not disagree with expectations. The quantile-quantile plots of 
the sample quantiles of reconstructed IPIs versus theoretical quantiles from a normal 
distribution are depicted in Figs. 6.20 and 6.21. Note that when the distribution of IPI is 
normal, the plot should be linear.  
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Figure 6.20: The quantile-quantile plots of the sample quantiles of reconstructed IPIs 
(grey +) versus theoretical quantiles from a normal distribution with the same mean and 
standard deviation (black solid). The IPIs were calculated from the second reconstructed 
MU of subject 2 (age 25 years, height 170 cm, weight 63 kg). Surface EMG was recorded 
during an isometric 5 % MVC measurement of the dominant biceps brachii. 
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Figure 6.21: The quantile-quantile plots of the sample quantiles of reconstructed IPIs 
(grey +) versus theoretical quantiles from a normal distribution with the same mean and 
standard deviation (black solid). The IPIs were calculated from the second reconstructed 
MU of subject 8 (age 31 years, height 180 cm, weight 65 kg). Surface EMG was recorded 
during an isometric 10 % MVC measurement of the dominant biceps brachii. 
 
 
The last criterion applied was the shape of the MUAPs reconstructed by the spike 
triggered sliding window averaging technique. The length of rectangular window was set 
to 100 samples, while the pulses reconstructed by the IC method were used as triggering 
spikes. The results are depicted in Figs. 6.22 to 6.25. The propagation of MUAPs along 
the columns of the electrode array and, hence, the location of the MU innervation zone 
can be recognized clearly. Finally, spatially adjoining electrodes detected very similar 
MUAP shapes, which is yet another indirect proof of accurately reconstructed MU 
innervation pulse trains.  
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Figure 6.22: The MUAPs corresponding to MU 4 reconstructed by the spike triggered 
sliding window averaging technique (473 averages) from 30 s long SEMG signals. The 
MUAPs are depicted with respect to the relative position of the corresponding spatial 
filter. Surface EMG signals were recorded during an isometric 5 % MVC measurement of 
the dominant biceps brachii of  subject 2 (age 25 years, height 170 cm, weight 63 kg). 
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Figure 6.23: The MUAPs corresponding to MU 1 reconstructed by the spike triggered 
sliding window averaging technique (293 averages) from 30 s long SEMG signals. The 
MUAPs are depicted with respect to the relative position of the corresponding spatial 
filter. Surface EMG signals were recorded during an isometric 5 % MVC measurement of 
the dominant biceps brachii of  subject 8 (age 31 years, height 180 cm, weight 65 kg). 
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Figure 6.24: The MUAPs corresponding to MU 2 reconstructed by the spike triggered 
sliding window averaging technique (210 averages) from 30 s long SEMG signals. The 
MUAPs are depicted with respect to the relative position of the corresponding spatial 
filter. Surface EMG signals were recorded during an isometric 10 % MVC measurement 
of the dominant biceps brachii of  subject 1 (age 26 years, height 176 cm, weight 68 kg). 
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Figure 6.25: The MUAPs corresponding to the MU 9 reconstructed by the spike 
triggered sliding window averaging technique from 30 s long SEMG signals. The 
MUAPs are depicted with respect to the relative position of the corresponding spatial 
filter. Surface EMG signals were recorded during an isometric 10 % MVC measurement 
of the dominant biceps brachii of  subject 2 (age 25 years, height 170 cm, weight 63 kg). 
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The results in Tables 6.7 and 6.8 show the average number of reconstructed MUs reached 
3.4 ± 1.3 (mean ± standard deviation) at 5 % MVC and 6.2 ± 2.2 at 10 % MVC. The 
exact number of active MUs is, of course, unknown. Nevertheless, we can approximately 
estimate the percentage of the information that was extracted from the surface EMG 
signals. The coarse estimation is given by the ratio between the energy of the 
reconstructed MUAP sequences and the energy of measurements. In our experiments, the 
MUAP sequences were constructed by convolving the reconstructed innervation pulse 
trains by the estimated MUAPs. All the MUAP sequences reconstructed from the same 
measurement were first summed together. The energy of the summation was compared to 
the energy of the corresponding measurement. Finally, the energy ratios were averaged 
over all measurements of the same muscle contraction. The results are depicted in Table 
6.9.   
 
The energy ratios show surprising results. According to Table 6.9, the IC method was 
significantly more efficient in the case of 10 % muscle contraction. At 10 % MVC, the IC 
method identified the origin of 70 % of energy, while at 5 % MVC the portion of the 
identified energy dropped to 45 %.  This outcome disagrees with the theory and also with 
the results on the synthetic signals. They all predict the IC method is more efficient in the 
case of fewer sources. The observed phenomenon can be partially explained with the 
influence of noise. Namely, the measurements that were recorded at 5 % MVC have 
significantly lower energy than the measurements recorded at 10 % MVC (the average 
energy ratio was 65 ± 10 %).  It is therefore possible that approximately the same noise 
contributed much bigger relative portion to the measurements at 5 % MVC than to the 
measurements at 10 % MVC. This hypothesis remains open for future investigations.  
 
Table 6.9: The ratio between the energy of the reconstructed MUAP sequences and the 
energy of the surface EMG measurements (mean ± standard deviation). Surface EMG 
signals were recorded during an isometric 5 % and 10 % MVC measurement of the 
dominant biceps brachii of nine healthy male subjects (age 26.8 ± 2.2 years, height 179 ± 
7 cm, weight 72.1 ± 8.3 kg). 
 

Subject 

The energy ratio between the 
reconstructed MUAP sequences 
and 5 % MVC measurements  

[%] 

The energy ratio between the 
reconstructed MUAP sequences and 

10 % MVC measurements  [%] 

1 36.0  ± 12.0 53.0 ± 8.0 
2 77.7  ± 13.4 93.8 ± 14.7 
3 56.7  ± 18.5 67.2 ± 10.2 
4 43.7 ± 17.3 55.0 ± 30.0 
5 35.7 ± 16.3 67.4 ± 17.9 
6 46.4  ± 14.3 78.6 ± 11.7 
7 54.0  ± 21.4 69.8 ± 7.0 
8 35.0  ± 13.0 74.9 ± 16.8 
9 43.7  ± 8.7 82.6 ± 6.9 
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6.2.2 Method based on time-frequency distributions  
 
In the previous subsection we evaluated the results obtained by the IC method. Applying 
the knowledge about the properties of MUs, we provided various indirect evidences for 
the accuracy of the reconstructed innervation pulse trains. The efficiency of the IC 
method was also demonstrated on the synthetic signals. After such extensive verification 
we can readily trust its results. On the other hand, the method based on TF distributions 
proved less reliable on the synthetic signals. Its sensitivity to the noise and to non-
orthogonal sources was also predicted in theory. Proving its accuracy in the same way as 
for the IC method would be very time-consuming and meaningless. We will rather rely 
on the results of the IC method and compare the performances of both methods. For the 
sake of clarity, we will only focus on the main decomposition results. All possible 
differences between the both methods will be discussed in detail in the next chapter. 
 
Following the example of the IC method, we first supposed the number of active MUs 
limited to 8 in the case of 5 % MVC measurements, and to 11 in the case of 10 % MVC 
measurements. Estimating the average MUAP length to 50 samples, the measurements 
were extended by the factor K=10 at 5 % MVC, and K=15 at 10 % MVC. As result the 
number of extended sources increased to 472 and 765 for 5 % and 10 % MVC 
measurements, respectively.  
 
The extended measurements entered the same decomposition procedure as in the case of 
synthetic signals. First, the correlation matrix of extended measurements was used to 
estimate the whitening matrix B and the noise variance 2σ . The extended measurements 
were whitened and pseudo Wigner-Ville STFD matrices ),( fnzzD  calculated. Using the 
criterion (4.21), all ),( fnzzD  matrices corresponding to the single-autoterms of the same 
source were first grouped into different sets, averaged and, afterwards, joint-diagonalized 
to estimate the unitary mixing matrix U.  The sources were reconstructed by applying the 
Moore-Penrose pseudoinverse of the estimated mixing matrix to the extended 
measurements. Finally, the reconstructed repetitions of the same source were aligned in 
time and averaged to produce the final estimates. The exact decomposition procedure is 
described in Subsection 6.1.1. 
   
Comparing the pulse trains only those reconstructed trains were taken into consideration, 
which contain less then 30 % of misplaced pulses referring to the results obtained by the 
IC method. All other reconstructions were tested against the regularity of IPI in order to 
exclude the possibility of discarding a novel MU (the MU which was not discovered by 
the IC method). The results are summarized in Tables 6.10 and 6.11. As expected from 
the results on synthetic signals no new MUs were identified. Some of the reconstructed 
innervation pulse trains are compared with the results of the IC method and depicted in 
Figs. 6.26 and 6.27.  
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Table 6.10: The number of innervation pulse trains reconstructed by the method based on 
TF distributions and their comparison to the results of the IC method: the percentage of 
the pulses, identified by both methods with respect to the number of pulses identified by 
the IC method (true positive statistics), and the percentage of the pulses that were 
identified only by the method based on TF distributions with respect to the number of all 
identified pulses (false positive statistics). The innervation pulse trains were 
reconstructed from 30 s long SEMG signals recorded during the isometric 5 % MVC 
measurements of the dominant biceps brachii of nine healthy male subjects (age 26.8 ± 
2.2 years, height 179 ± 7 cm, weight 72.1 ± 8.3 kg).  
 

Subject 
Number of 

reconstructe
d MUs 

Percentage of the 
pulses identified by 
both methods [%] 

Percentage of pulses identified 
only by the method based on TF 

distributions [%] 
1 4 90.9 ± 6.3 7.8 ± 6.8 
2 3 98.3 ± 1.4 1.6 ± 1.5 
3 1 95.7 ± 0.0 9.4 ± 0.0 
4 2 85.0 ± 1.7 24.8 ± 2.1 
5 2 71.3 ± 0.7 8.9 ± 2.0 
6 3 88.4 ± 6.6 11.4 ± 12.6 
7 3 96.5 ± 2.1 6.6 ± 5.5 
8 2 77.0 ± 3.0 3.6 ± 4.0 
9 2 90.1 ± 8.0 16.8 ± 12.5 

 
Table 6.11: The number of innervation pulse trains reconstructed by the method based on 
TF distributions and their comparison to the results of the IC method: the percentage of 
the pulses, identified by both methods with respect to the number of pulses identified by 
the IC method (true positive statistics), and the percentage of the pulses that were 
identified only by the method based on TF distributions with respect to the number of all 
identified pulses (false positive statistics). The innervation pulse trains were 
reconstructed from 30 s long SEMG signals recorded during the isometric 10 % MVC 
measurements of the dominant biceps brachii of nine healthy male subjects (age 26.8 ± 
2.2 years, height 179 ± 7 cm, weight 72.1 ± 8.3 kg).  
 

Subject 
Number of 

reconstructe
d MUs 

Percentage of the 
pulses identified by 
both methods [%] 

Percentage of pulses identified 
only by the method based on TF 

distributions [%] 
1 4 82.5 ± 4.9 14.6 ± 7.2 
2 3 80.0 ± 7.8 14.1 ± 8.3 
3 2 68.0 ± 8.4 19.6 ± 7.9 
4 1 62.0 ± 0.0 14.3 ± 0.0 
5 2 71.7 ± 7.3 16.8 ± 15.6 
6 4 96.1 ± 5.9 6.9 ± 3.9 
7 4 72.3 ± 6.4 20.4 ± 12.7 
8 4 97.2 ± 0.6 5.2 ± 3.6 
9 2 93.3 ± 4.3 4.4 ± 4.0 
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Figure 6.26: Innervation pulse trains reconstructed by the method based on TF 
distributions (grey) and their comparison to the results of the IC method (black): a) 
subject 1, MU 1 b) subject 1, MU 2, c) subject 2, MU 1, d) subject 2, MU 2, e) subject 6, 
MU 1, f) subject 6, MU 2 in g) subject 9, MU 1. The SEMG signals were recorded during 
the isometric 5 % MVC measurements of the dominant biceps brachii of nine healthy 
male subjects (age 26.8 ± 2.2 years, height 179 ± 7 cm, weight 72.1 ± 8.3 kg). The pulses 
reconstructed by the IC method are normalised to 1. 
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Figure 6.27: Innervation pulse trains reconstructed by the method based on TF 
distributions (grey) and their comparison to the results of the IC method (black): a) 
subject 1, ME 3 b) subject 6, MU 1, c) subject 6, MU 3, d) subject 6, MU 5, e) subject 8, 
MU 2, f) subject 8, MU 3, g) subject 9, MU 2 in h) subject 9, MU 4. The SEMG signals 
were recorded during the isometric 10 % MVC measurements of the dominant biceps 
brachii of nine healthy male subjects (age 26.8 ± 2.2 years, height 179 ± 7 cm, weight 
72.1 ± 8.3 kg). The pulses reconstructed by the IC method are normalised to 1. 
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6.2.3 Method based on higher-order statistics 
 
At the end, let us evaluate the results obtained by w-slices and the Newton-Gauss 
optimisation. Following the example of the previous subsection, the decomposition 
results will be compared to those, obtained by the IC method. To be more exact, the 
MUAPs reconstructed by the HOS-based method will be compared with the MUAPs 
reconstructed by the spike triggered sliding window averaging technique. As in the case 
of synthetic signals, the results will be expressed in the form of the norm of the MUAP 
differences defined by Eq. (6.1).   
 
 We already explained the calculation of cumulates is computationally complex and time-
demanding operation. In practice, the cumulants are usually expressed by the 
corresponding higher-order moments. The accuracy of such calculation depends mainly 
on the length of the processed signals. When w-slices are used to coarsely estimate the 
MUAPs, the cumulant values must be calculated up to the lags 1τ  and 2τ  which 
correspond to the estimated MUAP length. As a result, the computational complexity 
increases with both the square of the MUAP length and the length of the signals.  
 
In the case of real surface EMG signals the length of MUAPs was estimated to 50 
samples, on average, while the length of signals yielded 75000 samples. To speed up the 
calculation, all the measurements were undersampled by factor 2, reducing the sampling 
frequency form 2500 Hz to 1250 Hz. The undersampled measurements still fulfil the 
Nyquist theorem (the frequency content of the surface EMG signals is usually limited to 
the interval from 0 to 500 Hz). Regarding the results of the IC method, the number of 
active MUs was estimated to 5 and 10 at 5 % and 10 % MVC measurements, 
respectively. Due to enormous computational complexity of Newton-Gauss optimisation 
method (Subsection 6.1.2), the HOS-based method was tested only with 5 % MVC 
measurements. Similar to the case of synthetic signals, only 5 measurements from the 
central column of electrodes (the measurements recorded by the spatial filters (4,3), (5,3), 
(6,3), (7,3) and (8,3)) were used in our experiments.  
 
The decomposition procedure used follows the one with synthetic signals. Coarse 
estimations obtained by w-slices were optimized by the Newton-Gauss optimisation. Due 
to its computational complexity, only the first quadrants of the cumulant matrix Cklm were 
considered. The size of the step iδ  in (4.66) was calculated by bisection, while the vector 

of skewnesses  [ ]TKγγ1=γ  was calculated over all possible combinations of indices 
k, l and m. The decomposition procedure is described more in detail in Subsection 6.1.2. 
 
The reconstructed MUAPs were compared to the MUAPs reconstructed by the IC method 
(Subsection 6.2.1) according to Eq. (6.1). Only the MUAPs which differed less than 30 % 
from their reference values (the MUAPs detected by the IC method) were considered 
identified. The MUs were considered detected if at least 4 out of 5 MUAPs were 
identified. The results are reported in Table 6.12. The examples of perfectly reconstructed 
MUAPs are depicted in Figs. 6.28 and 6.29, while Figs. 6.30 and 6.31 illustrate the 
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examples of less accurate decomposition. The latter differ significantly form their 
reference values in the tail regions of MUAPs, while the central parts of the MUAPs are 
relatively accurately reconstructed. Approximately 40 % of the reconstructed MUs suffer 
fluctuations in the MUAPs’ tail regions. This phenomenon will be further discussed in 
the next chapter.  
 
The results of HOS-based decomposition were also visually inspected in order to exclude 
the possibility of additionally reconstructed MU (the MU which was not reconstructed by 
the IC method). Many decomposition results indicated existence of travailing 
components (components delayed in time in different EMG channels), nevertheless, no 
result was classified as a novel MU. Although there is no direct evidence, we can not 
exclude the possibility that some of the discarded results represented novel MUs.     
 
Table 6.12: The number of the MUs reconstructed by the HOS-based method and their 
comparison to the results of the IC method using the norm of the MUAP difference ijd  
defined by (6.1) (mean ± standard deviation). The MUAPs were reconstructed from 30 s 
long SEMG signals recorded during the isometric 5 % MVC measurements of the 
dominant biceps brachii of nine healthy male subjects (age 26.8 ± 2.2 years, height 179 ± 
7 cm, weight 72.1 ± 8.3 kg).  
 

Subject 

The number of 
MUs, 

reconstructed 
by both 
methods  

The number of 
MUs, 

reconstructed 
only by HOS-
based method 

Average norm of differences 
ijd  between the MUAPs, 

reconstructed by the HOS-
based method, and the 

MUAPs, reconstructed by the 
IC method [%]  

1 3 0 27.1 ± 9.7  
2 4 0  16.9 ± 7.5  
3 1 0 28.6 ± 0.0 
4 2 0 33.4 ± 4.7  
5 2 0 24.2 ± 15.8  
6 3 0 18.9 ± 13.4 
7 2 0 12.8 ± 10.6  
8 3 0 21.5 ± 6.4  
9 2 0  25.3 ± 11.7 
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Figure 6.28: MUAPs of the third MU reconstructed by HOS-based method (grey) and by 
the IC method (black). Surface EMG signals were recorded during the isometric 5 % 
MVC measurements of the dominant biceps brachii muscle of subject 6 (age 28 years, 
height 182 cm, weight 70 kg).  
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Figure 6.29: MUAPs of the second MU reconstructed by HOS-based method (grey) 
and by the IC method (black). Surface EMG signals were recorded during the 
isometric 5 % MVC measurements of the dominant biceps brachii muscle of subject 7 
(age 26 years, height 191 cm, weight 90 kg).  
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Figure 6.30: MUAPs of the third MU reconstructed by HOS-based method (grey) and by 
the IC method (black). Surface EMG signals were recorded during the isometric 5 % 
MVC measurements of the dominant biceps brachii muscle of subject 6 (age 28 years, 
height 182 cm, weight 70 kg). 
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Figure 6.31: MUAPs of the second MU reconstructed by HOS-based method (grey) and 
by the IC method (black). Surface EMG signals were recorded during the isometric 5 % 
MVC measurements of the dominant biceps brachii muscle of subject 5 (age 25 years, 
height 170 cm, weight 70 kg).  
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7.  

Discussion 

In Chapters 4 and 5 three different approaches to decomposition of convolutive mixtures 
of pulse sources were introduced. All three approaches suppose close-to-orthogonal pulse 
sources and can be used for MIMO system identification whenever the minimum inter-
pulse interval exceeds the length of system responses. In other words, they can be 
considered a general decomposition tool and applied to wide range of both convolutive 
and multiplicative pulse source mixtures.  
 
For the sake of generality, only basic ideas behind the decomposition algorithms were 
explained in Chapters 4 and 5. The exact decomposition procedures were introduced in 
Chapter 6, where we applied the approaches to the synthetic and real surface EMG 
signals and justified the choice of different parameters. In the case of synthetic signals, 
the decomposition results were compared against their reference values. The main 
attention was paid to the influence of noise and number of sources, whereas the IC 
method was also tested against the MU depth in the muscle tissue, the number of fibres in 
each MU, and their firing frequencies. Decomposing the real surface EMG signals, the 
reference values were unknown and we were forced to use different indirect quality 
measures. 
 
In this chapter, the results of all three decomposition approaches will be mutually 
compared. The pros and cons of every method will be identified and the deviations from 
the theoretical predictions explained. The most interesting and surprising results will also 
be clarified. Finally, the computational complexities of approaches will be estimated.  
 
 
7.1 Comparison of the results on synthetic surface EMG 

signals  
 
Although being based on the same assumptions, the approaches introduced in Chapters 4 
and 5 differ significantly form each other. The first difference can be observed by 
comparing their goals. The method based on time-frequency distributions enables the 
reconstruction of both MUAPs and innervation pulse trains. W-slices can only be used to 
reconstruct the MUAPs, while the information about the innervation trains is lost in the 
very first step where the higher-order cumulants are calculated. On the other hand, the IC 
method eliminates the impact of MUAPs and identifies only the innervation pulse trains.  
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The introduced methods also differ in their theoretical basis. The method based on the TF 
distributions is derived form the time-frequency analysis, which is primarily used for 
investigation and characterisation of nonstationary signals. W-slices are based on higher-
order statistics which are manly focused on identification of non-Gaussian random 
processes, whereas the IC method can be classified to a large class of linear algebra-
based decomposition techniques.  
 
Comparing both methods, based on second-order statistics, i.e. the method based on TF 
distributions and the IC method, one may claim they both follow the same theoretical 
postulates. Firstly, they are both based on the extension of the vector of measurements. 
Secondly, generally speaking, they both comprise the whitening of the measurements. 
Nevertheless, they were derived completely independently from each other. Moreover, 
the IC method does not rely on non-overlapped pulses and is much more noise-resistant. 
Finally, the method based on TF distributions simultaneously reconstructs all the pulse 
trains, while using the IC method the pulse trains are reconstructed independently, one 
after the other.   
 
Theoretical expectations are also confirmed by the results in Section 6.1. Keeping the 
SNR high, the numbers of MUs reconstructed by both methods show no significant 
differences. In the case of 5 and 10 active MUs and at SNR of 20 dB, 3.8 and 7.3 MUs 
were identified by the method based on TF distributions, respectively (Table 6.1). 
Processing the same signals, the IC method reconstructed 4.7 and 8.3 MUs (Table 6.4). 
Superiority of the IC method becomes obvious at low SNR. At SNR = 0 dB, the average 
number of MUs reconstructed by the method based on TF distributions yields 1.6 (5 
active MUs) and 0.7 (10 active MUs), whereas the same results for the IC method yield 
2.0 and 2.6 MUs. Still higher differences can be expected in the case of 20 active MUs. 
Although the number of sources highly exceeded the number of measurements, the IC 
method managed to identify 2.3 MUs. Because of high computation complexity the TF 
based method was only tested on signals with 5 and 10 active MUs. However, quick 
extrapolation of its results demonstrates that decomposing the signals with 20 active MUs 
at SNR = 0 dB, the TF based method would most probably fail to reconstruct any MU.    
 
The fact that the performance of TF based method drops with the number of active MUs 
should not come as a surprise. This was already foreseen in Subsection 4.1.5, where we 
explained how the probability of overlapped pulses increases with the number of active 
sources. At high SNR, the criterion (4.21) introduced in Subsection 4.1.4 ensures that 
only the STFD matrices comprising the contribution from a single source enter the joint-
diagonalization. At low SNR and large number of active MUs, the selection of STFD 
matrices fails, the impact of crossterms in STFD matrices increases and the joint-
diagonalization produces incorrect result.    
 
In other words, the noise and non-orthogonality of sources prevent the TF-based method 
to separate the sources completely. Even if we suppose the measurements completely 
white it is perfectly possible (but not strictly necessary) that the joint-diagonalization will 
converge to the wrong unitary matrix JDU . Accordingly, the reconstructed sources will 
still be linear combinations of all the original sources and we will still have to identify the 
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unknown unitary mixing matrix UUT
JD  which rotates the base of )1( −+ KLN -

dimensional space of extended sources for the unknown angles around the unknown axes 
to yield the space of reconstructed sources.  
 
Following the example from Subsection 5.2.1, one could argue the reconstructed sources 
can further be separated by applying the procedure for separation of the superimposed 
sources. This is generally true, but at least two major problems appear. Firstly, the 
averaging of the delayed repetitions of sources reconstructed by the TF based method has 
to be omitted and the resistance to noise drops considerably. Namely, by adding together 
the delayed repetitions of the same source, the number of overlapped pulses increases 
enormously and the separation described in Subsection 5.2.1 fails. Secondly, such a 
solution would considerably increase the computation complexity of the TF based 
method. Both the joint-diagonalization in the case of the TF based method and the 
separation of superimposed sources in the case of the IC method are computationally 
demanding steps. Joining them together would necessarily result in a time-demanding, 
but not necessarily effective decomposition.  
 
Another proof of superiority of the IC method can be observed by comparing the 
percentage of accurately identified pulses in Tables 6.1 and 6.4. At high SNR, almost all 
original pulses were reconstructed by the IC method, while the number of misplaced 
pulses was negligible. On the other hand, averaging the results at SNR of 20 and 15 dB, 
the method based on TF distribution reconstructed only 85 % of original pulses, whereas 
more than 5 % of identified pulses were misplaced. The differences are even more 
obvious at low SNR. At SNR of 0 dB, the TF based method reconstructed only 60 % of 
original pulses, while the percentage of misplaced pulses increased to 20 %, on average. 
Decomposing the same signals, the IC method identified more than 90 % of original 
pulses and misplaced less than 4 % of pulses.  
 
Finally, using the measure (6.1) defined in Subsection 6.1.2 the MUAPs reconstructed by 
both methods can be mutually compared. As already explained, using the TF based 
method the MUAPs can be estimated directly from the mixing matrix. However, the 
results in Table 6.2 demonstrate this is not the optimal route because the reconstructed 
MUAPs differ significantly from their reference values. At SNR of 20 dB, the average 2-
norm of differences between the reconstructed and the original MUAPs yields 60 %, and 
is further increased to 70 % at SNR of 0 dB. This is relatively interesting result, implying 
that (at least at high SNR) the relatively inaccurate estimations of the mixing matrix can 
produce relatively accurate estimations of pulse sources (using the TF based method the 
sources are estimated by multiplying the measurements by Moore-Penrose pseudoinverse 
of the estimated mixing matrix). The observed phenomenon can be partially explained by 
noticing that not all the estimates of the delayed source repetitions exhibit the same 
accuracy. In particular, the source repetitions corresponding to the elements with small 
absolute value in the mixing matrix are very sensitive to the noise and, hence, poorly 
reconstructed. Averaging the repetitions of the same source, all inaccurate estimations are 
left out (they are even not classified as repetitions of any particular source) and do not 
influence the final source estimation. On the other hand, the estimation of MUAPs 
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depends on all reconstructed repetitions of the original sources, including the inaccurate 
ones, and is hence much more sensitive to the noise.   
 
Using the IC method, the MUAPs have to be reconstructed by spike triggered sliding 
window averaging technique described in Section 5.1. The latter is (according to the 
estimation theory) an unbiased estimator. Applying the Cramer-Rao lower bound [92], it 
can easily be shown that its variance decreases proportionally with the number of 
detected MU firings [77]. In our experiments on the synthetic signals, the IC method 
reconstructed between 300 and 600 pulses of each MU, on average. Therefore, the theory 
predicts the noise will have negligible impact on the MUAP estimation. However, the 
noise is not the only factor which may hinder the reconstruction of MUAPs. 
Decomposing the signals with a large number of active MUs also the influence of other 
MUs has to be considered. However, supposing the zero-mean measurements and the 
number of identified pulses large enough we can readily expect the contributions of other 
active MUs will average to zero. 
 
The results on synthetic signals coincide with theoretical expectations (Table 6.6).  In the 
case of 5 active MUs and at SNR = 20 dB, the average 2-norm of differences between the 
reconstructed MUAPs and their reference values yields only 8.5 % and further decreases 
to 6.7 % at SNR = 0 dB. The fact that the errors decrease with the noise is not surprising. 
At low SNR, only the strongest MUs (MUs contributing the strongest MUAP 
conrtibutions to the measurements) are reconstructed by the IC method (Table 6.5). 
While the noise and other active MUs contribute the same absolute errors to all 
reconstructed MUAPs, their relative contributions depend on the power of the 
reconstructed MUAPs. The strongest MUAPs exhibit the smallest relative errors and vice 
versa. As expected, the errors in reconstructed MUAPs slightly increase with the number 
of active MUs. At SNR of 0 dB the 2-norm difference yields 6.8 % in the case of 10 
active MUs, and 11.3 % in the case of 20 active MUs.   
 
The spike triggered sliding window averaging technique can also be combined with the 
results of the method based on TF distributions. However, in the case of the TF based 
method, the number of accurately identified pulses significantly decreases with the SNR, 
while the influence of misplaced pulses cannot be neglected any more. Consequently, the 
sliding window averaging technique will provide less accurate MUAP estimations when 
combined with the method based on TF distributions.  
 
Let us now evaluate the results of the HOS-based method (Table 6.3). Due to its 
computational complexity the method was only tested on the signals with 5 active MUs. 
Nevertheless, it proved the expected resistance to the Gaussian noise. On average, 3.6, 
3.4 and 2.0 MUs were reconstructed at SNR of 20, 10 and 0 dB, respectively. Although 
inferior at high SNR, the HOS-based method becomes superior to the TF-based method 
and comparable to the IC method at low SNR. Comparing the reconstructed MUAPs the 
HOS-based method ranks second. It gives much more accurate estimations than the TF-
based method, but falls behind the IC method. In similar fashion to the IC method, only 
the strongest MUs are reconstructed at low SNR. Unlike the errors of the IC method, the 
errors of the HOS-based method slightly increase with the noise. The average 2-norm of 
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the MUAP errors yields 12 % at SNR = 20 dB and increases to 16 % at SNR = 0 dB. This 
proves that the increase in third-order cumulants of the noise outranks the decrease of the 
ratio between the 2-norm of the noise and the 2-norm of the reconstructed MUAP.  
 
Finally, recall the HOS-based method used only 5 out of 50 synthetic surface EMG 
signals, whereas the other two methods employed all possible measurements. In spite of 
that, the HOS-based method proved to be on a par with the IC method (at least at low 
SNR).     
 
7.2 Comparison of the results on the real surface EMG signals  
 
Evaluating the results obtained on the real surface EMG signals the original MU firing 
patterns and the reference MUAP shapes are unknown. However, encouraged by the 
results on the synthetic signals we can rely on less strict measures. In our experiments, 
the results of the IC method were first tested against the well-known properties of MUs 
(Chapter 3). We proved the reconstructed innervation pulse trains agree with all 
physiologically induced measures: all of the identified MUs exhibit the regular firing 
patterns, the IPI variability is almost in all cases limited to 10 % of the IPI mean, while 
none of several statistical tests was able to reject the hypothesis of normally distributed 
IPIs. The most intuitive evidence was the shape of the MUAPs reconstructed by spike 
triggered sliding window averaging technique. Not only the similar shapes detected by 
the adjacent electrodes, but also the clear MUAP propagation patterns (Figs. 6.22, 6.23, 
6.24 and 6.25 ) prove the accuracy of the detected innervation pulse trains.   
 
Based on numerous direct and indirect evidences, we supposed the IC method can be 
trusted and assessed its efficiency first. As in the case of synthetic signals, the main 
performance criteria were the number of reconstructed MUs, and the regularity of their 
firing patterns (the number of accurately reconstructed pulses). Strict assessment of the 
reconstructed innervation trains is, of course, impossible. Due to the original innervation 
pulse train being unknown, we can only coarsely estimate the number of missed and 
misplaced pulses. In our experiments, we assumed all the MUs strictly follow their 
regular firing patterns, hence, every IPI which exceeded the IPI mean by factor 1.5 was 
classified as a missed pulse, while every IPI that was shorter than the half of the mean IPI 
was classified as a misplaced pulse. In reality, this may not necessarily be the case as 
both the double firings as well as the missing pulses are perfectly possible. Nevertheless, 
this was the only way to coarsely assess the efficiency of the IC method.   
 
Decomposing 30 s long real surface EMG measurements the IC method reconstructed 
approximately 400 pulses, on average. Both the average number of missed pulses and the 
average number of misplaced pulses were estimated to 10 (Figs. 6.17, 6.18 and 6.19). 
Again, the estimation of misplaced pulses is critical and should only be used as a coarse 
indication. Nevertheless, the regularity of the reconstructed firing patterns proves with 
high probability that the number of misplaced pulses can be neglected.     
 
Evaluating the number of reconstructed MUs, the IC method was only partially 
successful. A total of 30 MUs (3.4 ± 1.3 MUs per subject) were reconstructed in the case 
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of 5 % MVC measurements. A coarse comparison of the reconstructed MUAP sequences 
to the original measurements revealed the identified MUs contribute only 45 % of total 
energy. The efficiency was significantly improved in the case of 10 % MVC 
measurements, where a total of 56 MUs (6,2  ± 2,2 MUs per subject) were identified, 
while the energy ratio between the reconstructed MUAP trains and the original 
measurements increased to approximately 70 %. The partial success of the IC method can 
be explained by considering the impact of the noise. Nevertheless, this phenomenon 
should be assessed more critically in the future.       
 
In order to assess their accuracy, the other two methods were compared to the IC method. 
According to the results on the synthetic signals the TF-based method proved to be less 
reliable. In the case of 5 % MVC real measurements a total of 22 MUs (2.4 ± 0.9 MUs 
per subject) was identified, while 87 ± 9 % of pulses reconstructed by the IC method 
were also identified by the TF-based method (Table 6.10). On the other hand, 10 ± 9 % of 
the pulses reconstructed by the TF-based method was not identified by the IC method. 
Decomposing the 10 % MVC measurements, the total number of identified MUs reached 
26 (2.7 ± 1.2 MUs per subject). On average, 80 ± 13 % of pulses identified by the IC 
method was also reconstructed by the TF-based method, while the percentage of the 
pulses reconstructed only by the TF-based method increased to 13 ± 6 % (Table 6.11). 
Not all of the pulses that were detected only by the TF-based method seem to be 
misplaced (see, for example, Fig. 6.27 h). But such cases were extremely rare and a 
detailed analysis of the reconstructed IPIs revealed the vast majority of pulses identified 
only by the TF-based method were misplaced.   
 
There is yet another parallel which can be drawn when comparing the results on synthetic 
signals to the results on real signals. In both cases, the efficiency of the TF-based method 
significantly decreases with the number of active MUs. Comparing the decompositions of 
the real 5 % and 10 % MVC measurements, the total number of identified MUs differs 
only by 4 (in comparison with the IC method where the number of identified MUs almost 
doubled). On the other hand, the percentage of accurately identified pulses decreases by 
almost 10 %.  These results coincide perfectly with the results on synthetic signals, and 
also with the theoretical expectations (Subsection 4.1.4).      
 
We are now in a position to assess the efficiency of the HOS-based method. This is not 
an easy task as the HOS-based method reconstructs only the MUAPs. The only possible 
route is to mutually compare the results of HOS-based method to the MUAPs 
reconstructed by the spike triggered sliding window averaging technique, which already 
proved to be very efficient. However, interpreting the results in Table 6.12, we must 
always bear in mind that we only compare two different estimates of the same MUAP.  
 
Due to its high computational complexity, the HOS-based method was only applied to the 
5 % MVC measurements. The total number of reconstructed MUs reached 22 (2.4 ± 0.9 
MUs per subject) and is perfectly comparable to the results of other two methods. The 
central regions of the reconstructed MUAPs exhibit an almost perfect match with the 
estimates of the IC method (Figs. 6.28 and 6.29). The significant differences were 
detected mainly in both marginal regions (Figs. 6.30 and 6.31). The average 2-norm of 
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the MUAP differences (6.1) yields 23 ± 6 % (Table 6.12) and should be carefully 
interpreted. The results on synthetic signals reveal the average 2-norm error of the 
reconstructed MUAPs is 7 % in the case of IC method, and 14 % in the case of HOS-
based method. Adding the errors together, the 2-norm of differences between both 
estimates yields 21 %, which agrees perfectly with the results on the real surface EMG 
signals.  
 
How can we explain the differences among the marginal regions of reconstructed 
MUAPs (Figs. 6.30 and 6.31)? One of many possible reasons lies in the non-
orthogonality of MU innervation trains. The latter contribute nonzero values to the cross-
cumulants of sources and induce the differences between the cumulant values calculated 
from measurements and the cumulant values estimated from the Barlett-Brillinger-
Rosenblatt equation. Consequently, the Newton-Gauss optimisation converges towards 
the wrong solutions (Subsection 4.2.4). Another possible explanation is that the marginal 
fluctuations are mainly cased by non-Gaussian noise.  
 
 
7.3 Computational complexity 
 
In previous two sections, the accuracy and efficiency of three novel decomposition 
approaches were assessed. The results proved the IC method is superior on both synthetic 
and real surface EMG signals. In this section, the experimentally measured computational 
complexities of all three approaches are mutually compared. For the clearly reasons, only 
the results on synthetic signals are reported, while the computation complexities are 
always expressed in the amount of time required to completely decompose one second of 
all simultaneously processed measurements of synthetic surface EMG (50 measurements 
whenever the TF-based or IC method is applied, and 5 measurements whenever the HOS-
based method is used). Actually, we talk about the duration of computation. 
 
All three decomposition methods were implemented in the Matlab programming tool and 
tested on personal computer with Pentium IV 2 GHz processor and 1 GB of memory. 
Decomposing 5 synthetic measurements of 5 active MUs, the HOS-based method 
required approximately 2 minutes per every second of measurements. In the case of 10 
signals with 10 active MUs the duration of computation increased to 32 minutes. On the 
other hand, the TF-based method spent approximately 45 and 90 seconds to process every 
second of the 50 surface EMG signals with 5 and 10 active MUs, respectively. The 
detailed analysis revealed that the time-critical sections lie in the Newton-Gauss 
optimisation of the HOS-based method and in the joint-diagonalization of the TF-based 
method.  
 
Using the parallel version of the joint-diagonalization [74], the time for decomposition 
improves enormously. Supposing the homogenous cluster of processing units, a coarse 
speedup ratio can be estimated by multiplying the number of processing units by factor 
0.9 [74]. For example, decomposing 50 synthetic measurements of 10 active MUs on 10 
homogenous personal computers with 2 GHz Pentium IV processors, the average 
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duration of computation decreases to 10 seconds per every second of 50 EMG signals 
[74]. 
  
Exhibiting superior accuracy, the IC method also proved to be most time-efficient. 
Processing 50 measurements of 30 s long synthetic surface EMG with 5 active MUs, the 
duration of computation per every second of measurements yielded approximately 10 s, 
and was increased to 13 and 15 s in the case of 10 and 20 active MUs, respectively. The 
vast majority of time was spent searching for possibly unidentified MUs, while all the 
strongest MUs were completely reconstructed within 1 to 4 seconds (depending on the 
SNR).  
 
The IC method exhibits another nice property. Its computation complexity is almost 
independent of the number of active MUs. The only step which is affected by the number 
of active MUs is the selection of the time moments in which the activity index exceeds 
the noise threshold. The larger the number of active MUs the smaller the relative 
influence of noise and the larger the number of time moments in which the IC method 
searches for the candidate pulses. The computation complexity can further be reduced by 
replacing the brute force searching of the candidate MU firings by heuristic search 
methods. Their detailed explanation and evaluation reaches beyond the scope of this 
discussion. The main goal in this thesis was to assess the efficiency and accuracy of the 
developed approaches, while the time complexity was mainly ignored.   
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8.  

Conclusions 

In this dissertation, three novel approaches to blind source separation of convolutive 
mixtures of close-to-orthogonal pulse sources are introduced. The first approach is based 
on joint-diagonalization of spatial time-frequency distribution matrices and enables the 
reconstruction of both the mixing matrix and pulse sources. Our tests on synthetic surface 
EMG signals revealed its sensitivity to the noise and overlapped pulses. Although special 
measures were derived to avoid their devastating influence, the noise and non-orthogonal 
sources remain the biggest problem of the TF-based approach. The tests also pointed out 
the reconstruction of impulse responses based on the estimated mixing matrix is very 
prone to errors, even when the reconstructed sources show their perfect match with 
reference values. Knowing the sources, the system responses can also be estimated by 
employing the spike triggered sliding window averaging technique (Section 5.1). It is 
very robust to noise, but its performance is degraded when the number of misplaced 
pulses becomes significantly large. The TF-based method is, hence, suitable only for the 
MIMO systems identification in low-noise environments. Moreover, being sensitive to 
overlapped pulses, the TF-based method suffers a sever drop in performance when the 
number of sources increases. Supposing high SNR and orthogonal sources, the presented 
approach proves very successful – it outperforms the HOS-based method and even 
matches the performance of the IC method. Thus, in some specific environments the TF-
based method remains an important tool for blind deconvolution of close-to-orthogonal 
pulse sources.   
 
The second approach introduced in this dissertation is based on higher-order statistics and 
is a generalization of the so call w-slices method. Neglecting the information about the 
source pulse trains, it can only be applied to estimate the system responses. The tests on 
synthetic surface EMG signals demonstrated its high resistance to the Gaussian noise, 
while the main drawback can be found in its high computational complexity, which often 
hinders the decomposition.   
 
High computational complexity was also the reason why the HOS-based method was 
only tested on the signals with the smallest possible number of sources. Nevertheless, the 
presented approach proved very robust and can be expected to work well also on MIMO 
systems with more sources. In the case of synthetic surface EMG signals, the 
reconstructed MUAPs showed a perfect match with their reference values, especially at 
low SNRs. Applying the HOS-based method to the real surface EMG signals, slight 
deviations in the marginal regions of reconstructed MUAPs appeared. One could argue 
the marginal regions of the reconstructed MUAPs can simply be neglected. Since the 
corresponding reference values are small, no information would be lost, while the 
decomposition results would significantly improve. But the reference shape of system 
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responses is unknown and (at least in general) the marginal regions can not simply be 
neglected. Yet, there are at least two more reasons for keeping the marginal regions of 
reconstructed MUAPs intact. The first one is the indicated difference between the 
synthetic and real signals. Although closely inspected, no oscillations were observed on 
synthetic MUAPs. The second one is the unbiased and critical comparison of HOS-based 
method to the other two decomposition approaches. Cutting the errors would certainly 
blur the true picture.         
 
Deriving the third decomposition approach (the so called inverse correlation based 
method), the decomposition of slightly under-determined MIMO systems was 
investigated. Our tests on synthetic and real surface EMG signals proved the IC method 
is superior in both the number and the accuracy of reconstructed innervation pulse trains. 
In the synthetic case, the reconstructed MUs’ firing patterns perfectly matched their 
reference values, while the number of misplaced pulses was negligible, also at low SNR. 
In the case of real signals, no reference values can be used, but using the statistics and 
estimation theory numerous indirect measures showing the agreement of the 
reconstructed innervation trains with physiologically induced limitations were derived.   
 
There are several assumptions and limitations which have to be considered when 
applying the decomposition approaches to the surface EMG signals. The first assumption 
is inherently induced by the theory of blind source separation. When processing the 
convolutive mixtures it is common to suppose sources mutually independent [4, 21, 22, 
23, 78, 79, 84, 97, 106]. The approaches introduced in this dissertation follow the same 
assumption. However, in order to emphasize their practical value the small number of 
overlapped pulses is also allowed. Both the TF-based and IC method comprise special 
algorithms which suppress the devastating influences of noise and non-orthogonal 
sources. The IC method even enables the decomposition of highly superimposed sources 
(when two arbitrary sources overlap in 10 % of their pulses). This modification proves 
crucial in the case of SEMG signals. Although the MUs should fire asynchronously at 
low contraction forces [56, 114, 139, 158], the short-term MU synchronization has been 
frequently observed [93, 139, 158]. While limited in duration (usually up to a few firing 
pulses), this phenomenon clearly violates the assumption of mutually independent 
sources and could considerably affect the separation process. Supposing close-to-
orthogonal sources, any temporal pulse overlapping, such as in the case of short-term MU 
synchronization, are allowed and, moreover, implicitly included into the data model. 
Moreover, as depicted in Fig. 6.18, the IC method is perfectly capable of detecting both 
recruitment of a new MUs and drop outs of the already detected ones. From the medical 
point of view this proves to be a very important result.   
    
Also important are the assumptions concerning the mixing matrix. It is, even in the case 
of more sources than measurements, assumed of a full row rank [22, 23, 68]. We further 
supposed the system impulse responses finite, casual and time invariant [56, 114, 166, 
100, 33]. This implies certain practical limitations. The phenomenon of muscle 
contraction, for example, can be modelled as time invariant only if the EMG recording 
has been taken in a stable and controllable measurement session, i.e. during an isometric 
muscle contraction, without the appearance of fatigue-induced changes [56, 114, 166, 
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167]. The latter can not always be established, especially when long fatigable 
contractions are observed. In such cases, the measurements should be divided into 
consecutive partially overlapped epochs which have to be processed separately. In this 
fashion, also the long-term changes in the shape of MUAPs can be temporarily tracked. 
The rapid changes of MUAPs, such as the one induced by dynamic contractions [116], 
are very hard to cope with and are not recognised by the approaches introduced in this 
thesis.  
 
The last major limitation is initiated by the ratio between the number of measurements 
and the number of sources. While the TF-based and HOS-based methods assume more 
measurements than sources, the IC method is expected to work successfully only when 
the number of extended sources does not exceed twice the number of extended 
measurements. Applying the TF-based and IC methods, the number of extended sources 
is proportional to the length of the system responses. Therefore, it is wise to limit the 
sampling frequency to its smallest possible value still fulfilling the Nyquist condition. 
Due to the filtering effects of subcutaneous tissues the highest frequency components 
constituting the surface EMG signals hardly exceed 500 Hz. Hence, it usually suffices to 
set the sampling frequency to 1024 Hz. Then the length of MUAPs can be estimated to 
approx. 25 samples which implies the number of active MUs is increased by factor 25.      
 
Surface electromyography (SEMG) has recently become a rather developed and matured 
measuring technique. High-density multi-electrode arrays enabling acquisition of more 
than 100 surface EMG channels and providing all the required reliability, robustness, and 
repeatability of surface EMG measurements are being developed [136]. Suppose now 100 
measurements of surface EMG and estimate the number of MUs that can theoretically be 
reconstructed by the IC method. This method works also with slightly underdetermined 
systems, but as a rule, the number of reconstructed sources hardly exceeds the number of 
measurements. Keeping the number of measurements limited to 100 (by not additionally 
extending the measurements) and setting the sampling frequency to 1000 Hz, this implies 
that only 4 MUs can be completely reconstructed. Extending the measurements by factor 
K=10, the number of reconstructed MUs increases to approx. 25, while setting the 
extension factor to K=20 approx. 35 active MUs can be identified. Of course, this is just a 
coarse extrapolation of the results which are presented in this thesis. Deriving more 
accurate estimation at least two additional factors have to be considered. Firstly, the size 
of the correlation matrix of measurements and the computational complexity of the IC 
method are proportional to the square of the extension factor K. Therefore, multiplying 
the K by 2 the computational complexity increases by 4. Secondly, when the extension 
factor K is increased the condition number of the mixing matrix and its robustness to 
noise usually decrease. Therefore, the optimal extension factor depends on the signal’s 
quality and usually varies between 5 and 15. When the number of active MUs exceeds 
the number of surface EMG channels (N>M), the optimal ratio between the number of 
extended sources and the number of extended measurements is achieved by setting 
extension factor to 1.  
 
In the case of surface EMG signals the number of active MUs is usually high [19, 56, 
113, 114, 146]. Even at low contraction forces there are several tens of MUs active in the 
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detection volume. Increasing the level of muscle contraction, the number of active MUs 
rises and it is quite common for SEMG to comprise MUAPs of more than a hundred 
MUs. Improving the spatial selectivity of the detection system, i.e. reducing the detection 
volume, can efficiently limit the number of active sources. Nevertheless, the optimal 
decomposition of SEMG signals is expected at the contractions not exceeding 30 % 
MVC. Preliminary tests prove the IC method can be also used at much higher 
contractions to reconstruct at least a few MUs. However, in this thesis only slightly 
underdetermined MIMO systems with close-to-orthogonal sources are studied, while the 
assessment of the IC method at high muscle contractions is left for future investigations.   
 
We conclude the thesis by checking the hypotheses introduced in Chapter 1. According to 
the results we can readily focus on the IC method. In the first hypothesis, we supposed 
that the complete decomposition of convolutive mixtures is possible if and only if the 
number of measurements exceeds the number of sources. When this is not the case, only 
a limited number of sources can be completely reconstructed. Decomposing the synthetic 
surface EMG signals at SNR = 20 dB, the IC method completely reconstructed almost all 
MUs (Table 6.4).  In the underdetermined case, the number of extended sources exceeded 
the number of measurements by factor 1.4. Consequently, only a half of the simulated 
MUs where completely reconstructed. Hence, the first hypothesis can be considered 
confirmed.  
 
The second hypothesis predicts the influence of non-orthogonal sources. It assumes that 
non-orthogonal sources cause the impulse responses in statistical moments and higher-
order cumulants to interfere, what introduces additional errors to the decomposition 
process. Non-orthogonality of sources was extensively studied throughout this 
dissertation. We explained that overlapped pulses hinder the TF-based decomposition 
(Subsection 4.1.4), induce the non-zero cross cumulants of sources (Subsection 4.2.4) and 
cause the superimpositions of sources reconstructed by the IC method (Section 5.2). In 
the case of the TF-based and IC method, special countermeasures suppressing the 
influence of non-orthogonal sources were also derived. Therefore, also the second 
hypothesis can be considered confirmed.  
 
The third hypothesis comprises two different assumptions. We first suppose that the exact 
number of sources which can be completely reconstructed from noisy measurements 
depends on their firing rate. The results in Table 6.5 clearly reject this assumption. The 
decomposition results exhibit high positive correlation with the number of MU fibres and 
high negative correlation with the MU depth in the muscle tissue. Surprisingly, no 
significant influence of the MUs’ firing rate was detected. The second assumption 
predicted the superiority of the HOS-based approaches in the noisy environments. 
Although the HOS-based method proved to be highly resistant to noise it was not 
superior. Significantly better results were produced by the IC method (Chapters 6 and 7). 
Hence, also the second assumption of the third hypothesis must be rejected.     
 
The principal thesis of our research, as stated in Chapter 1 summarises the assumptions 
and limitations from the first and second abovementioned hypotheses and can, thus, also 
be considered fully proved.  
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